For questions 5 through 10 , consider \( m(x)=\frac{2}{x}, t(x)=2 x^{2}+3 x, w(x)=2 x+5 \). 5. Determine \( (m \circ t)(2) \). 6. Determine \( (t \circ w)(x) \). 7. Determine the domain of \( (t \circ w)(x) \). Determine \( (t \circ m)(x) \). Determine the domain of \( (t \circ m)(x) \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let’s tackle each of the questions step by step. ### 5. Determine \( (m \circ t)(2) \). To find \( (m \circ t)(2) \), we first need to evaluate \( t(2) \): \[ t(2) = 2(2^2) + 3(2) = 2(4) + 6 = 8 + 6 = 14. \] Now we apply \( m \) to this result: \[ m(t(2)) = m(14) = \frac{2}{14} = \frac{1}{7}. \] Thus, \( (m \circ t)(2) = \frac{1}{7} \). ### 6. Determine \( (t \circ w)(x) \). To find \( (t \circ w)(x) \), we substitute \( w(x) \) into \( t(x) \): \[ w(x) = 2x + 5, \] Now substitute \( w(x) \) into \( t(x) \): \[ t(w(x)) = t(2x + 5) = 2(2x + 5)^2 + 3(2x + 5). \] Expanding \( (2x + 5)^2 \): \[ (2x + 5)^2 = 4x^2 + 20x + 25, \] So: \[ t(w(x)) = 2(4x^2 + 20x + 25) + 3(2x + 5) = 8x^2 + 40x + 50 + 6x + 15 = 8x^2 + 46x + 65. \] Thus, \( (t \circ w)(x) = 8x^2 + 46x + 65 \). ### 7. Determine the domain of \( (t \circ w)(x) \). The function \( w(x) = 2x + 5 \) is defined for all real numbers. Since \( t(x) = 2x^2 + 3x \) is also a polynomial, it is defined for all real numbers as well. Therefore, the domain of \( (t \circ w)(x) \) is all real numbers: \[ \text{Domain of } (t \circ w)(x) = (-\infty, \infty). \] ### 8. Determine \( (t \circ m)(x) \). To find \( (t \circ m)(x) \), we substitute \( m(x) \) into \( t(x) \): \[ m(x) = \frac{2}{x}, \] Now, substitute \( m(x) \) into \( t(x) \): \[ t(m(x)) = t\left(\frac{2}{x}\right) = 2\left(\frac{2}{x}\right)^2 + 3\left(\frac{2}{x}\right). \] This expands to: \[ t\left(\frac{2}{x}\right) = 2 \cdot \frac{4}{x^2} + \frac{6}{x} = \frac{8}{x^2} + \frac{6}{x}. \] Thus, \( (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \). ### 9. Determine the domain of \( (t \circ m)(x) \). The function \( m(x) = \frac{2}{x} \) is defined for all real numbers except \( x = 0 \). Hence, the output of \( m(x) \) will also exclude 0. Therefore, since \( t(x) \) takes all values except for 0 should be considered: \[ \text{Domain of } (t \circ m)(x) = x \in \mathbb{R}, x \neq 0 \to (-\infty, 0) \cup (0, \infty). \]