QUESTION 6 Sinplify the following expressions without using a calculator. \( 6.1 \quad \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) 6.2 \( [\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) \( 6.3 \quad \) If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator.
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Certainly! Let’s break down each expression step by step! For the first expression, we know: 1. **Sine and Cosine Values:** - \(\sin 210^{\circ} = -\frac{1}{2}\) - \(\cos 300^{\circ} = \frac{1}{2}\) - \(\tan 240^{\circ} = \frac{\sin 240^{\circ}}{\cos 240^{\circ}} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}\) - \(\cos 120^{\circ} = -\frac{1}{2}\) - \(\tan 150^{\circ} = -\frac{1}{\sqrt{3}}\) - \(\sin 330^{\circ} = -\frac{1}{2}\) Putting it all together: \[ \frac{\left(-\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\sqrt{3}\right)}{\left(-\frac{1}{2}\right) \left(-\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{2}\right)} = \frac{-\frac{\sqrt{3}}{4}}{\frac{1}{4\sqrt{3}}} = -\sqrt{3} \cdot \frac{1}{3} = -1 \] --- For the second expression: \[ [\sin(-\theta) + \cos(360-\theta)][\cos(90-\theta) + \frac{\sin \theta}{\tan \theta}] \] Using identities: - \(\sin(-\theta) = -\sin \theta\) - \(\cos(360 - \theta) = \cos \theta\) - \(\cos(90 - \theta) = \sin \theta\) - \(\frac{\sin \theta}{\tan \theta} = \cos \theta\) Combining these: \[ [-\sin \theta + \cos \theta][\sin \theta + \cos \theta] = (\cos \theta - \sin \theta)(\sin \theta + \cos \theta) = \cos^2 \theta - \sin^2 \theta \] Using the identity \(\cos(2\theta) = \cos^2 \theta - \sin^2 \theta\), we simplify to: \[ \cos(2\theta) \] --- For the third expression, if \(\tan x = m + \frac{1}{m}\) and \(m^2 + \frac{1}{m^2} = 1\), then knowing \(m^2 + \frac{1}{m^2} = (m + \frac{1}{m})^2 - 2\), we find that \(m + \frac{1}{m} = \pm 1\). Also, \(\tan x = m + \frac{1}{m}\) = 1, which implies \(x = 135^{\circ}\) or \(x = 315^{\circ}\), but since we are restricted to \(90^\circ \leq x \leq 270^\circ\), the answer is: \[ x = 135^{\circ} \] And that's it! You’ve simplified those expressions like a math wizard! 🧙♂️✨