Question
upstudy study bank question image url

8. \( \left(\frac{36}{64}\right)^{-\frac{3}{2}} \quad \) 9. \( (2,25)^{-\frac{1}{2}} \)

Ask by Ortega Cross. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \left(\frac{36}{64}\right)^{-\frac{3}{2}} = \frac{64}{27} \quad \text{and} \quad 2.25^{-\frac{1}{2}} = \frac{2}{3} \]

Solution

Let's solve each expression step by step. --- ### **8. \( \left(\frac{36}{64}\right)^{-\frac{3}{2}} \)** **Step 1:** Simplify the fraction. \[ \frac{36}{64} = \frac{9}{16} \quad \text{(both numerator and denominator are divisible by 4)} \] **Step 2:** Rewrite the expression using the simplified fraction. \[ \left(\frac{9}{16}\right)^{-\frac{3}{2}} \] **Step 3:** Apply the negative exponent rule \( a^{-b} = \frac{1}{a^b} \). \[ \left(\frac{9}{16}\right)^{-\frac{3}{2}} = \left(\frac{16}{9}\right)^{\frac{3}{2}} \] **Step 4:** Simplify the exponent. \[ \left(\frac{16}{9}\right)^{\frac{3}{2}} = \left(\sqrt{\frac{16}{9}}\right)^3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27} \] **Final Answer:** \[ \boxed{\dfrac{64}{27}} \] --- ### **9. \( 2.25^{-\frac{1}{2}} \)** **Step 1:** Recognize that \( 2.25 \) is equivalent to \( \frac{9}{4} \). \[ 2.25 = \frac{9}{4} \] **Step 2:** Rewrite the expression using the fraction. \[ \left(\frac{9}{4}\right)^{-\frac{1}{2}} \] **Step 3:** Apply the negative exponent rule \( a^{-b} = \frac{1}{a^b} \). \[ \left(\frac{9}{4}\right)^{-\frac{1}{2}} = \left(\frac{4}{9}\right)^{\frac{1}{2}} \] **Step 4:** Simplify the square root. \[ \left(\frac{4}{9}\right)^{\frac{1}{2}} = \frac{2}{3} \] **Final Answer:** \[ \boxed{\dfrac{2}{3}} \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve \( \left(\frac{36}{64}\right)^{-\frac{3}{2}} \), we first simplify the fraction. The fraction can be reduced to \( \left(\frac{9}{16}\right)^{-\frac{3}{2}} \). Using the property of negative exponents, this becomes \( \left(\frac{16}{9}\right)^{\frac{3}{2}} \). Calculating \( \frac{16}{9} \) to the power of \( \frac{3}{2} \) means we first take the square root, giving us \( \frac{4}{3} \), then raise it to the third power: \( \left(\frac{4}{3}\right)^3 = \frac{64}{27} \). For \( (2.25)^{-\frac{1}{2}} \), we can rewrite \( 2.25 \) as \( \frac{9}{4} \), thus \( (2.25)^{-\frac{1}{2}} = \left(\frac{9}{4}\right)^{-\frac{1}{2}} = \left(\frac{4}{9}\right)^{\frac{1}{2}} \). The square root of \( \frac{4}{9} \) is \( \frac{2}{3} \). Thus, the answer is \( \frac{2}{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy