Question
upstudy study bank question image url

Use the Binomial Theorem to expand \( (x+3)^{5} \) \( \begin{array}{l}x^{5}+3 x^{4}+9 x^{3}+27 x^{2}+81 x+243 \\ \frac{x^{5}+15 x^{4}+90 x^{3}+270 x^{2}+405 x+243}{x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+5 x+1} \\ x^{2}+243\end{array} \)

Ask by Pena Chadwick. in the United States
Nov 09,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The expansion of \( (x + 3)^5 \) is \( x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243 \).

Solution

To expand \( (x+3)^{5} \) using the Binomial Theorem, we can use the formula: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In this case, \( a = x \), \( b = 3 \), and \( n = 5 \). Thus, we have: \[ (x + 3)^5 = \sum_{k=0}^{5} \binom{5}{k} x^{5-k} \cdot 3^k \] Now, we will calculate each term in the expansion: - For \( k = 0 \): \[ \binom{5}{0} x^{5-0} \cdot 3^0 = 1 \cdot x^5 \cdot 1 = x^5 \] - For \( k = 1 \): \[ \binom{5}{1} x^{5-1} \cdot 3^1 = 5 \cdot x^4 \cdot 3 = 15x^4 \] - For \( k = 2 \): \[ \binom{5}{2} x^{5-2} \cdot 3^2 = 10 \cdot x^3 \cdot 9 = 90x^3 \] - For \( k = 3 \): \[ \binom{5}{3} x^{5-3} \cdot 3^3 = 10 \cdot x^2 \cdot 27 = 270x^2 \] - For \( k = 4 \): \[ \binom{5}{4} x^{5-4} \cdot 3^4 = 5 \cdot x^1 \cdot 81 = 405x \] - For \( k = 5 \): \[ \binom{5}{5} x^{5-5} \cdot 3^5 = 1 \cdot 1 \cdot 243 = 243 \] Now, we can combine all these terms together: \[ (x + 3)^5 = x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243 \] Thus, the expansion of \( (x + 3)^5 \) is: \[ \boxed{x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To expand \( (x+3)^{5} \) using the Binomial Theorem, we can utilize the formula \( (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \). Here, \( a = x \), \( b = 3 \), and \( n = 5 \). The expansion consists of: 1. \( \binom{5}{0} x^5 \cdot 3^0 = 1 \cdot x^5 \cdot 1 = x^5 \) 2. \( \binom{5}{1} x^4 \cdot 3^1 = 5 \cdot x^4 \cdot 3 = 15x^4 \) 3. \( \binom{5}{2} x^3 \cdot 3^2 = 10 \cdot x^3 \cdot 9 = 90x^3 \) 4. \( \binom{5}{3} x^2 \cdot 3^3 = 10 \cdot x^2 \cdot 27 = 270x^2 \) 5. \( \binom{5}{4} x^1 \cdot 3^4 = 5 \cdot x \cdot 81 = 405x \) 6. \( \binom{5}{5} x^0 \cdot 3^5 = 1 \cdot 1 \cdot 243 = 243 \) Putting these together, we get: \[ (x+3)^{5} = x^{5} + 15x^{4} + 90x^{3} + 270x^{2} + 405x + 243 \] So the correct expansion is: \( x^{5} + 15 x^{4} + 90 x^{3} + 270 x^{2} + 405 x + 243 \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy