Use the Binomial Theorem to expand \( (x+3)^{5} \) \( \begin{array}{l}x^{5}+3 x^{4}+9 x^{3}+27 x^{2}+81 x+243 \\ \frac{x^{5}+15 x^{4}+90 x^{3}+270 x^{2}+405 x+243}{x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+5 x+1} \\ x^{2}+243\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To expand \( (x+3)^{5} \) using the Binomial Theorem, we can utilize the formula \( (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \). Here, \( a = x \), \( b = 3 \), and \( n = 5 \). The expansion consists of: 1. \( \binom{5}{0} x^5 \cdot 3^0 = 1 \cdot x^5 \cdot 1 = x^5 \) 2. \( \binom{5}{1} x^4 \cdot 3^1 = 5 \cdot x^4 \cdot 3 = 15x^4 \) 3. \( \binom{5}{2} x^3 \cdot 3^2 = 10 \cdot x^3 \cdot 9 = 90x^3 \) 4. \( \binom{5}{3} x^2 \cdot 3^3 = 10 \cdot x^2 \cdot 27 = 270x^2 \) 5. \( \binom{5}{4} x^1 \cdot 3^4 = 5 \cdot x \cdot 81 = 405x \) 6. \( \binom{5}{5} x^0 \cdot 3^5 = 1 \cdot 1 \cdot 243 = 243 \) Putting these together, we get: \[ (x+3)^{5} = x^{5} + 15x^{4} + 90x^{3} + 270x^{2} + 405x + 243 \] So the correct expansion is: \( x^{5} + 15 x^{4} + 90 x^{3} + 270 x^{2} + 405 x + 243 \).