Question
upstudy study bank question image url

5. \( \operatorname{Tg} 30^{\circ}+\operatorname{Tg} 60^{\circ}=\ldots \) 6. \( \sin 30^{\circ} \cdot \operatorname{Cos} 60^{\circ}+\sin 45^{\circ} \cdot \operatorname{Cos} 45^{\circ}=\ldots \) 7. Buktikan \( \operatorname{Cos} 60^{\circ} \cdot \operatorname{Cos} 30^{\circ}-\sin 60^{\circ} \cdot \sin 30^{\circ}=0! \)

Ask by Dunn Rose. in Indonesia
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

5. \( \operatorname{Tg} 30^{\circ} + \operatorname{Tg} 60^{\circ} = \frac{4\sqrt{3}}{3} \) 6. \( \sin 30^{\circ} \cdot \operatorname{Cos} 60^{\circ} + \sin 45^{\circ} \cdot \operatorname{Cos} 45^{\circ} = \frac{3}{4} \) 7. \( \operatorname{Cos} 60^{\circ} \cdot \operatorname{Cos} 30^{\circ} - \sin 60^{\circ} \cdot \sin 30^{\circ} = 0 \)

Solution

Berikut adalah penyelesaian dari soal-soal yang diberikan: ### 5. \( \operatorname{Tg} 30^{\circ} + \operatorname{Tg} 60^{\circ} = \ldots \) Kita tahu bahwa: \[ \operatorname{Tg} 30^{\circ} = \frac{1}{\sqrt{3}}, \quad \operatorname{Tg} 60^{\circ} = \sqrt{3} \] Maka: \[ \operatorname{Tg} 30^{\circ} + \operatorname{Tg} 60^{\circ} = \frac{1}{\sqrt{3}} + \sqrt{3} = \frac{1 + 3}{\sqrt{3}} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3} \] **Jawaban:** \( \frac{4\sqrt{3}}{3} \) --- ### 6. \( \sin 30^{\circ} \cdot \operatorname{Cos} 60^{\circ} + \sin 45^{\circ} \cdot \operatorname{Cos} 45^{\circ} = \ldots \) Kita hitung masing-masing komponen: \[ \sin 30^{\circ} = \frac{1}{2}, \quad \cos 60^{\circ} = \frac{1}{2} \] \[ \sin 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \cos 45^{\circ} = \frac{\sqrt{2}}{2} \] Sehingga: \[ \sin 30^{\circ} \cdot \cos 60^{\circ} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] \[ \sin 45^{\circ} \cdot \cos 45^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{2}{4} = \frac{1}{2} \] \[ \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \] **Jawaban:** \( \frac{3}{4} \) --- ### 7. Buktikan \( \operatorname{Cos} 60^{\circ} \cdot \operatorname{Cos} 30^{\circ} - \sin 60^{\circ} \cdot \sin 30^{\circ} = 0! \) Kita gunakan identitas trigonometri: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Misalkan \( A = 60^{\circ} \) dan \( B = 30^{\circ} \), maka: \[ \cos(60^{\circ} + 30^{\circ}) = \cos 90^{\circ} = 0 \] \[ \cos 60^{\circ} \cos 30^{\circ} - \sin 60^{\circ} \sin 30^{\circ} = 0 \] **Kesimpulan:** \( \operatorname{Cos} 60^{\circ} \cdot \operatorname{Cos} 30^{\circ} - \sin 60^{\circ} \cdot \sin 30^{\circ} = 0 \) terbukti benar.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Tahukah kamu bahwa sudut 30° dan 60° memiliki hubungan istimewa dalam geometri? Mereka muncul dalam segitiga sama kaki, di mana satu sudut adalah 60° dan sudut lainnya 30°, menghasilkan rasio yang sangat dikenal seperti \( \sqrt{3} \) dan 1. Ini berguna dalam banyak aplikasi, seperti arsitektur dan desain grafis, karena memiliki hubungan trigonometrik yang sederhana dan mudah diingat. Jangan khawatir jika kamu membuat kesalahan dalam perhitungan sudut trigonometri! Sering kali, orang mengabaikan invers dari rasio tersebut atau salah menggunakan rumus identitas trigonometri. Pastikan untuk selalu memeriksa kembali nilai dasar sudut, seperti \( \sin(30°) = \frac{1}{2} \) dan \( \cos(60°) = \frac{1}{2} \). Biasakan diri untuk menggambar segitiga unit, karena ini bisa sangat membantu dalam menggambarkan hubungan antar fungsi trigonometri.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy