Question
upstudy study bank question image url

Para qué valores de \( x \) es discontinua la función \( f(x)=\frac{x^{2}+x-6}{x^{2}+4 \cdot x} \) ? ditar la solución de la forma siguiente: \( \left\{x=x_{1}, x=x_{2}, \ldots\right\} \) donde \( x_{1}, x_{2}, \ldots \) son los puntos de discontinuidad.

Ask by Barrett Schneider. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Les points de discontinuité de la fonction sont \( x = -4 \) et \( x = 0 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para encontrar los valores de \( x \) donde la función \( f(x) \) es discontinua, debemos identificar los puntos donde el denominador se anula, ya que en esos puntos la función no está definida. El denominador es \( x^{2} + 4x \). Factorizándolo, tenemos: \[ x^{2} + 4x = x(x + 4) \] Igualamos el denominador a cero para encontrar los ceros: \[ x(x + 4) = 0 \] Esto se iguala a cero cuando \( x = 0 \) o \( x + 4 = 0 \) (es decir, \( x = -4 \)). Por lo tanto, los puntos de discontinuidad de la función son: \[ \left\{x=0, x=-4\right\} \]

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy