Answer
The unit tangent vector at \( t=2 \) is \( \frac{1}{3}(2 \hat{i} + 2 \hat{j} + \hat{k}) \), and the unit normal vector at \( t=2 \) is \( \frac{1}{3 \sqrt{5}}(2 \hat{i} + 2 \hat{k}) \).
Solution
To find the unit tangent and unit normal vectors at \( t=2 \) on the given curve defined by the parametric equations:
\[
x = t^2 - 1, \quad y = 4t - 3, \quad z = 2t^2 - 6t
\]
we will follow these steps:
1. **Calculate the derivative of the position vector** to find the tangent vector.
2. **Evaluate the tangent vector at \( t=2 \)**.
3. **Find the unit tangent vector** by normalizing the tangent vector.
4. **Calculate the derivative of the unit tangent vector** to find the normal vector.
5. **Evaluate the normal vector at \( t=2 \)** and normalize it to find the unit normal vector.
### Step 1: Calculate the derivative of the position vector
The position vector \( \mathbf{r}(t) \) is given by:
\[
\mathbf{r}(t) = (t^2 - 1) \hat{i} + (4t - 3) \hat{j} + (2t^2 - 6t) \hat{k}
\]
Now, we differentiate \( \mathbf{r}(t) \) with respect to \( t \):
\[
\mathbf{r}'(t) = \frac{d}{dt}(t^2 - 1) \hat{i} + \frac{d}{dt}(4t - 3) \hat{j} + \frac{d}{dt}(2t^2 - 6t) \hat{k}
\]
Calculating the derivatives:
\[
\mathbf{r}'(t) = (2t) \hat{i} + (4) \hat{j} + (4t - 6) \hat{k}
\]
### Step 2: Evaluate the tangent vector at \( t=2 \)
Now we evaluate \( \mathbf{r}'(2) \):
\[
\mathbf{r}'(2) = (2 \cdot 2) \hat{i} + (4) \hat{j} + (4 \cdot 2 - 6) \hat{k}
\]
Calculating this gives:
\[
\mathbf{r}'(2) = 4 \hat{i} + 4 \hat{j} + 2 \hat{k}
\]
### Step 3: Find the unit tangent vector
The magnitude of the tangent vector \( \mathbf{r}'(2) \) is:
\[
\|\mathbf{r}'(2)\| = \sqrt{4^2 + 4^2 + 2^2} = \sqrt{16 + 16 + 4} = \sqrt{36} = 6
\]
Thus, the unit tangent vector \( \mathbf{T}(2) \) is:
\[
\mathbf{T}(2) = \frac{\mathbf{r}'(2)}{\|\mathbf{r}'(2)\|} = \frac{4 \hat{i} + 4 \hat{j} + 2 \hat{k}}{6} = \frac{2}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{1}{3} \hat{k}
\]
### Step 4: Calculate the derivative of the unit tangent vector
Next, we need to find the derivative of the tangent vector \( \mathbf{T}(t) \):
\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}
\]
To find the unit normal vector, we first need to differentiate \( \mathbf{T}(t) \) and then evaluate it at \( t=2 \).
### Step 5: Evaluate the normal vector at \( t=2 \)
We will calculate \( \mathbf{T}'(t) \) and then evaluate it at \( t=2 \). However, since we need the unit normal vector, we can directly find the normal vector from the derivative of the tangent vector.
The normal vector \( \mathbf{N}(t) \) is given by:
\[
\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}
\]
To find \( \mathbf{T}'(t) \), we will differentiate \( \mathbf{T}(t) \) and evaluate it at \( t=2 \).
Now, let's calculate the unit normal vector.
We will calculate the derivative of \( \mathbf{r}'(t) \) and then find the unit normal vector.
Calculating \( \mathbf{r}''(t) \):
\[
\mathbf{r}''(t) = \frac{d}{dt}(2t) \hat{i} + \frac{d}{dt}(4) \hat{j} + \frac{d}{dt}(4t - 6) \hat{k} = 2 \hat{i} + 0 \hat{j} + 4 \hat{k}
\]
Now, we evaluate \( \mathbf{r}''(2) \):
\[
\mathbf{r}''(2) = 2 \hat{i} + 0 \hat{j} + 4 \hat{k}
\]
### Final Calculation
Now we can find the unit normal vector \( \mathbf{N}(2) \):
The magnitude of \( \mathbf{r}''(2) \) is:
\[
\|\mathbf{r}''(2)\| = \sqrt{2^2 + 0^2 + 4^2} = \sqrt{4 + 0 + 16} = \sqrt{20} = 2\sqrt{5}
\]
Thus, the unit normal vector is:
\[
\mathbf{N}(2) = \frac{\mathbf{r}''(2)}{\|\mathbf{r}''(2)\|} = \frac{2 \hat{i} + 0 \hat{j} + 4 \hat{k}}{2\sqrt{5}} = \frac{1}{\sqrt{5}}(2 \hat{i} + 0 \hat{j} + 4 \hat{k})
\]
### Summary of Results
The unit tangent vector at \( t=2 \) is:
\[
\mathbf{T}(2) = \frac{2}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{1}{3} \hat{k}
\]
The unit normal vector at \( t=2 \) is:
\[
\mathbf{N}(2) = \frac{1}{\sqrt{5}}(2 \hat{i} + 0 \hat{j} + 4 \hat{k})
\]
Thus, the final answers are:
\[
\mathbf{T}(2) = \frac{1}{3}(2 \hat{i} + 2 \hat{j} +
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution