\( \left\lvert\, \leftarrow \quad \begin{array}{l}\text { Let } \mathbf{v}=\langle 9,5\rangle \text {. Carry out the following computation. } \\ \text { Find }|-2 \mathbf{v}|\end{array}\right. \) \( \begin{array}{l}|-2 \mathbf{v}|=\square \\ \text { (Type an exact answer, using radicals as needed.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find \(|-2 \mathbf{v}|\), we first calculate \(-2 \mathbf{v}\). Given \(\mathbf{v} = \langle 9,5\rangle\), \[ -2 \mathbf{v} = -2 \langle 9,5 \rangle = \langle -18, -10 \rangle. \] Next, we calculate the magnitude (or length) of the vector \(\langle -18, -10 \rangle\) using the formula for the magnitude of a vector \(\sqrt{x^2 + y^2}\): \[ |-2 \mathbf{v}| = \sqrt{(-18)^2 + (-10)^2} = \sqrt{324 + 100} = \sqrt{424}. \] We can simplify \(\sqrt{424}\): \[ \sqrt{424} = \sqrt{4 \times 106} = 2\sqrt{106}. \] Putting it all together, we find: \[ |-2 \mathbf{v}| = 2\sqrt{106}. \] So, the final answer is: \[ \boxed{2\sqrt{106}}. \]