Question
upstudy study bank question image url

Forces \( F_{1}\left(10 \mathrm{~N}, 090^{\circ}\right), \mathrm{F}_{2}\left(20 \mathrm{~N}, 210^{\circ}\right) \) and \( \mathrm{F}_{3}\left(4 \mathrm{~N}, 330^{\circ}\right) \) act on a particle. Find, correct to one decimal place, the magnitude of the resultant force.

Ask by Weston Hilton. in Nigeria
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The resultant force has a magnitude of 14.0  N.

Solution

To find the magnitude of the resultant force acting on the particle, we'll break down each force into its Cartesian components (x and y), sum these components, and then calculate the magnitude of the resulting vector. ### Given Forces: 1. \( F_{1} = 10 \text{ N at } 90^{\circ} \) 2. \( F_{2} = 20 \text{ N at } 210^{\circ} \) 3. \( F_{3} = 4 \text{ N at } 330^{\circ} \) ### Step 1: Break Down Each Force into Components **Force \( F_{1} \):** - \( F_{1x} = 10 \cos(90^{\circ}) = 0 \) - \( F_{1y} = 10 \sin(90^{\circ}) = 10 \text{ N} \) **Force \( F_{2} \):** - \( F_{2x} = 20 \cos(210^{\circ}) = 20 \times (-\frac{\sqrt{3}}{2}) \approx -17.32 \text{ N} \) - \( F_{2y} = 20 \sin(210^{\circ}) = 20 \times (-0.5) = -10 \text{ N} \) **Force \( F_{3} \):** - \( F_{3x} = 4 \cos(330^{\circ}) = 4 \times \frac{\sqrt{3}}{2} \approx 3.46 \text{ N} \) - \( F_{3y} = 4 \sin(330^{\circ}) = 4 \times (-0.5) = -2 \text{ N} \) ### Step 2: Sum of Components - **Total \( x \)-component:** \[ F_{\text{total}_x} = F_{1x} + F_{2x} + F_{3x} = 0 - 17.32 + 3.46 \approx -13.86 \text{ N} \] - **Total \( y \)-component:** \[ F_{\text{total}_y} = F_{1y} + F_{2y} + F_{3y} = 10 - 10 - 2 = -2 \text{ N} \] ### Step 3: Calculate the Magnitude of the Resultant Force \[ |\mathbf{F}_{\text{resultant}}| = \sqrt{(F_{\text{total}_x})^2 + (F_{\text{total}_y})^2} = \sqrt{(-13.86)^2 + (-2)^2} \approx \sqrt{191.88 + 4} \approx \sqrt{195.88} \approx 14.0 \text{ N} \] ### **Final Answer:** The magnitude of the resultant force is **14.0  N**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the resultant force from the given forces, we can break each force into its components using trigonometric functions. 1. For \( F_1(10 \, \text{N}, 90^\circ) \): - \( F_{1x} = 10 \cos(90^\circ) = 0 \) - \( F_{1y} = 10 \sin(90^\circ) = 10 \) 2. For \( F_2(20 \, \text{N}, 210^\circ) \): - \( F_{2x} = 20 \cos(210^\circ) = 20(-\sqrt{3}/2) \approx -17.32 \) - \( F_{2y} = 20 \sin(210^\circ) = 20(-1/2) = -10 \) 3. For \( F_3(4 \, \text{N}, 330^\circ) \): - \( F_{3x} = 4 \cos(330^\circ) = 4(\sqrt{3}/2) \approx 3.464 \) - \( F_{3y} = 4 \sin(330^\circ) = 4(-1/2) = -2 \) Now, we sum up the components: - \( R_x = F_{1x} + F_{2x} + F_{3x} = 0 - 17.32 + 3.464 \approx -13.856 \) - \( R_y = F_{1y} + F_{2y} + F_{3y} = 10 - 10 - 2 = -2 \) The magnitude of the resultant force \( R \) is calculated using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} \approx \sqrt{(-13.856)^2 + (-2)^2} \approx \sqrt{192.491 + 4} \approx \sqrt{196.491} \approx 14.0 \text{ N} \] Therefore, the magnitude of the resultant force, correct to one decimal place, is approximately \( 14.0 \, \text{N} \).

Latest Physics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy