Question
Match each equation below with its solution(s) 1. \( x^{2}=4 \) 2. \( x^{2}=-4 \) 3. \( x^{2}+2=0 \) 4. \( x^{2}-2=0 \) 5. \( x^{2}=-32 \) 6. \( x^{2}=32 \) 7. \( x-2=0 \) 8. \( x+2=0 \) \( \pm 2 \pm i \sqrt{2} \pm 2 i \quad 2 \pm 4 i \sqrt{2} \quad-2 \pm 4 \sqrt{2} \pm \sqrt{2} \)
Ask by Dickson Coleman. in the United States
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here are the matches between each equation and its solution(s):
1. \( x^{2}=4 \) → \( \pm 2 \)
2. \( x^{2}=-4 \) → \( \pm 2i \)
3. \( x^{2}+2=0 \) → \( \pm \sqrt{2}i \)
4. \( x^{2}-2=0 \) → \( \pm \sqrt{2} \)
5. \( x^{2}=-32 \) → \( \pm 4\sqrt{2}i \)
6. \( x^{2}=32 \) → \( \pm 4\sqrt{2} \)
7. \( x-2=0 \) → \( 2 \)
8. \( x+2=0 \) → \( -2 \)
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x-2=0\)
- step1: Move the constant to the right side:
\(x=0+2\)
- step2: Remove 0:
\(x=2\)
Solve the equation \( x+2=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x+2=0\)
- step1: Move the constant to the right side:
\(x=0-2\)
- step2: Remove 0:
\(x=-2\)
Solve the equation \( x^{2}=4 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(x^{2}=4\)
- step1: Simplify the expression:
\(x=\pm \sqrt{4}\)
- step2: Simplify the expression:
\(x=\pm 2\)
- step3: Separate into possible cases:
\(\begin{align}&x=2\\&x=-2\end{align}\)
- step4: Rewrite:
\(x_{1}=-2,x_{2}=2\)
Solve the equation \( x^{2}=-4 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using square roots:
\(x^{2}=-4\)
- step1: Simplify the expression:
\(x=\pm \sqrt{-4}\)
- step2: Simplify the expression:
\(x=\pm 2i\)
- step3: Separate into possible cases:
\(\begin{align}&x=2i\\&x=-2i\end{align}\)
- step4: Rewrite:
\(x_{1}=-2i,x_{2}=2i\)
Solve the equation \( x^{2}-2=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(x^{2}-2=0\)
- step1: Add or subtract both sides:
\(x^{2}=2\)
- step2: Simplify the expression:
\(x=\pm \sqrt{2}\)
- step3: Separate into possible cases:
\(\begin{align}&x=\sqrt{2}\\&x=-\sqrt{2}\end{align}\)
- step4: Rewrite:
\(x_{1}=-\sqrt{2},x_{2}=\sqrt{2}\)
Solve the equation \( x^{2}+2=0 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using square roots:
\(x^{2}+2=0\)
- step1: Add or subtract both sides:
\(x^{2}=-2\)
- step2: Simplify the expression:
\(x=\pm \sqrt{-2}\)
- step3: Simplify the expression:
\(x=\pm \left(\sqrt{2}\times i\right)\)
- step4: Separate into possible cases:
\(\begin{align}&x=\sqrt{2}\times i\\&x=-\sqrt{2}\times i\end{align}\)
- step5: Rewrite:
\(x_{1}=-\sqrt{2}\times i,x_{2}=\sqrt{2}\times i\)
Solve the equation \( x^{2}=32 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(x^{2}=32\)
- step1: Simplify the expression:
\(x=\pm \sqrt{32}\)
- step2: Simplify the expression:
\(x=\pm 4\sqrt{2}\)
- step3: Separate into possible cases:
\(\begin{align}&x=4\sqrt{2}\\&x=-4\sqrt{2}\end{align}\)
- step4: Rewrite:
\(x_{1}=-4\sqrt{2},x_{2}=4\sqrt{2}\)
Solve the equation \( x^{2}=-32 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using square roots:
\(x^{2}=-32\)
- step1: Simplify the expression:
\(x=\pm \sqrt{-32}\)
- step2: Simplify the expression:
\(x=\pm \left(4\sqrt{2}\times i\right)\)
- step3: Separate into possible cases:
\(\begin{align}&x=4\sqrt{2}\times i\\&x=-4\sqrt{2}\times i\end{align}\)
- step4: Rewrite:
\(x_{1}=-4\sqrt{2}\times i,x_{2}=4\sqrt{2}\times i\)
Let's match each equation with its corresponding solution(s):
1. **Equation:** \( x^{2}=4 \)
**Solution:** \( x_{1}=-2, x_{2}=2 \)
**Match:** \( \pm 2 \)
2. **Equation:** \( x^{2}=-4 \)
**Solution:** \( x_{1}=-2i, x_{2}=2i \)
**Match:** \( \pm 2i \)
3. **Equation:** \( x^{2}+2=0 \)
**Solution:** \( x_{1}=-\sqrt{2}i, x_{2}=\sqrt{2}i \)
**Match:** \( \pm \sqrt{2}i \)
4. **Equation:** \( x^{2}-2=0 \)
**Solution:** \( x_{1}=-\sqrt{2}, x_{2}=\sqrt{2} \)
**Match:** \( \pm \sqrt{2} \)
5. **Equation:** \( x^{2}=-32 \)
**Solution:** \( x_{1}=-4\sqrt{2}i, x_{2}=4\sqrt{2}i \)
**Match:** \( \pm 4\sqrt{2}i \)
6. **Equation:** \( x^{2}=32 \)
**Solution:** \( x_{1}=-4\sqrt{2}, x_{2}=4\sqrt{2} \)
**Match:** \( \pm 4\sqrt{2} \)
7. **Equation:** \( x-2=0 \)
**Solution:** \( x=2 \)
**Match:** \( 2 \)
8. **Equation:** \( x+2=0 \)
**Solution:** \( x=-2 \)
**Match:** \( -2 \)
### Summary of Matches:
- \( x^{2}=4 \) → \( \pm 2 \)
- \( x^{2}=-4 \) → \( \pm 2i \)
- \( x^{2}+2=0 \) → \( \pm \sqrt{2}i \)
- \( x^{2}-2=0 \) → \( \pm \sqrt{2} \)
- \( x^{2}=-32 \) → \( \pm 4\sqrt{2}i \)
- \( x^{2}=32 \) → \( \pm 4\sqrt{2} \)
- \( x-2=0 \) → \( 2 \)
- \( x+2=0 \) → \( -2 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
1. \( x^{2}=4 \) ➜ \( x = \pm 2 \) 2. \( x^{2}=-4 \) ➜ \( x = \pm 2i \) 3. \( x^{2}+2=0 \) ➜ \( x = \pm i\sqrt{2} \) 4. \( x^{2}-2=0 \) ➜ \( x = \pm \sqrt{2} \) 5. \( x^{2}=-32 \) ➜ \( x = \pm 4i\sqrt{2} \) 6. \( x^{2}=32 \) ➜ \( x = \pm 4\sqrt{2} \) 7. \( x-2=0 \) ➜ \( x = 2 \) 8. \( x+2=0 \) ➜ \( x = -2 \)