Question
upstudy study bank question image url

Match each equation below with its solution(s) 1. \( x^{2}=4 \) 2. \( x^{2}=-4 \) 3. \( x^{2}+2=0 \) 4. \( x^{2}-2=0 \) 5. \( x^{2}=-32 \) 6. \( x^{2}=32 \) 7. \( x-2=0 \) 8. \( x+2=0 \) \( \pm 2 \pm i \sqrt{2} \pm 2 i \quad 2 \pm 4 i \sqrt{2} \quad-2 \pm 4 \sqrt{2} \pm \sqrt{2} \)

Ask by Dickson Coleman. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the matches between each equation and its solution(s): 1. \( x^{2}=4 \) → \( \pm 2 \) 2. \( x^{2}=-4 \) → \( \pm 2i \) 3. \( x^{2}+2=0 \) → \( \pm \sqrt{2}i \) 4. \( x^{2}-2=0 \) → \( \pm \sqrt{2} \) 5. \( x^{2}=-32 \) → \( \pm 4\sqrt{2}i \) 6. \( x^{2}=32 \) → \( \pm 4\sqrt{2} \) 7. \( x-2=0 \) → \( 2 \) 8. \( x+2=0 \) → \( -2 \)

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(x-2=0\) - step1: Move the constant to the right side: \(x=0+2\) - step2: Remove 0: \(x=2\) Solve the equation \( x+2=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x+2=0\) - step1: Move the constant to the right side: \(x=0-2\) - step2: Remove 0: \(x=-2\) Solve the equation \( x^{2}=4 \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(x^{2}=4\) - step1: Simplify the expression: \(x=\pm \sqrt{4}\) - step2: Simplify the expression: \(x=\pm 2\) - step3: Separate into possible cases: \(\begin{align}&x=2\\&x=-2\end{align}\) - step4: Rewrite: \(x_{1}=-2,x_{2}=2\) Solve the equation \( x^{2}=-4 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using square roots: \(x^{2}=-4\) - step1: Simplify the expression: \(x=\pm \sqrt{-4}\) - step2: Simplify the expression: \(x=\pm 2i\) - step3: Separate into possible cases: \(\begin{align}&x=2i\\&x=-2i\end{align}\) - step4: Rewrite: \(x_{1}=-2i,x_{2}=2i\) Solve the equation \( x^{2}-2=0 \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(x^{2}-2=0\) - step1: Add or subtract both sides: \(x^{2}=2\) - step2: Simplify the expression: \(x=\pm \sqrt{2}\) - step3: Separate into possible cases: \(\begin{align}&x=\sqrt{2}\\&x=-\sqrt{2}\end{align}\) - step4: Rewrite: \(x_{1}=-\sqrt{2},x_{2}=\sqrt{2}\) Solve the equation \( x^{2}+2=0 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using square roots: \(x^{2}+2=0\) - step1: Add or subtract both sides: \(x^{2}=-2\) - step2: Simplify the expression: \(x=\pm \sqrt{-2}\) - step3: Simplify the expression: \(x=\pm \left(\sqrt{2}\times i\right)\) - step4: Separate into possible cases: \(\begin{align}&x=\sqrt{2}\times i\\&x=-\sqrt{2}\times i\end{align}\) - step5: Rewrite: \(x_{1}=-\sqrt{2}\times i,x_{2}=\sqrt{2}\times i\) Solve the equation \( x^{2}=32 \). Solve the quadratic equation by following steps: - step0: Solve using square roots: \(x^{2}=32\) - step1: Simplify the expression: \(x=\pm \sqrt{32}\) - step2: Simplify the expression: \(x=\pm 4\sqrt{2}\) - step3: Separate into possible cases: \(\begin{align}&x=4\sqrt{2}\\&x=-4\sqrt{2}\end{align}\) - step4: Rewrite: \(x_{1}=-4\sqrt{2},x_{2}=4\sqrt{2}\) Solve the equation \( x^{2}=-32 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using square roots: \(x^{2}=-32\) - step1: Simplify the expression: \(x=\pm \sqrt{-32}\) - step2: Simplify the expression: \(x=\pm \left(4\sqrt{2}\times i\right)\) - step3: Separate into possible cases: \(\begin{align}&x=4\sqrt{2}\times i\\&x=-4\sqrt{2}\times i\end{align}\) - step4: Rewrite: \(x_{1}=-4\sqrt{2}\times i,x_{2}=4\sqrt{2}\times i\) Let's match each equation with its corresponding solution(s): 1. **Equation:** \( x^{2}=4 \) **Solution:** \( x_{1}=-2, x_{2}=2 \) **Match:** \( \pm 2 \) 2. **Equation:** \( x^{2}=-4 \) **Solution:** \( x_{1}=-2i, x_{2}=2i \) **Match:** \( \pm 2i \) 3. **Equation:** \( x^{2}+2=0 \) **Solution:** \( x_{1}=-\sqrt{2}i, x_{2}=\sqrt{2}i \) **Match:** \( \pm \sqrt{2}i \) 4. **Equation:** \( x^{2}-2=0 \) **Solution:** \( x_{1}=-\sqrt{2}, x_{2}=\sqrt{2} \) **Match:** \( \pm \sqrt{2} \) 5. **Equation:** \( x^{2}=-32 \) **Solution:** \( x_{1}=-4\sqrt{2}i, x_{2}=4\sqrt{2}i \) **Match:** \( \pm 4\sqrt{2}i \) 6. **Equation:** \( x^{2}=32 \) **Solution:** \( x_{1}=-4\sqrt{2}, x_{2}=4\sqrt{2} \) **Match:** \( \pm 4\sqrt{2} \) 7. **Equation:** \( x-2=0 \) **Solution:** \( x=2 \) **Match:** \( 2 \) 8. **Equation:** \( x+2=0 \) **Solution:** \( x=-2 \) **Match:** \( -2 \) ### Summary of Matches: - \( x^{2}=4 \) → \( \pm 2 \) - \( x^{2}=-4 \) → \( \pm 2i \) - \( x^{2}+2=0 \) → \( \pm \sqrt{2}i \) - \( x^{2}-2=0 \) → \( \pm \sqrt{2} \) - \( x^{2}=-32 \) → \( \pm 4\sqrt{2}i \) - \( x^{2}=32 \) → \( \pm 4\sqrt{2} \) - \( x-2=0 \) → \( 2 \) - \( x+2=0 \) → \( -2 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

1. \( x^{2}=4 \) ➜ \( x = \pm 2 \) 2. \( x^{2}=-4 \) ➜ \( x = \pm 2i \) 3. \( x^{2}+2=0 \) ➜ \( x = \pm i\sqrt{2} \) 4. \( x^{2}-2=0 \) ➜ \( x = \pm \sqrt{2} \) 5. \( x^{2}=-32 \) ➜ \( x = \pm 4i\sqrt{2} \) 6. \( x^{2}=32 \) ➜ \( x = \pm 4\sqrt{2} \) 7. \( x-2=0 \) ➜ \( x = 2 \) 8. \( x+2=0 \) ➜ \( x = -2 \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy