(a) \( \frac{2.3^{n+1}+3^{n+2}}{2 \cdot 3^{n+5}+3^{n}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To simplify the given expression \( \frac{2.3^{n+1}+3^{n+2}}{2 \cdot 3^{n+5}+3^{n}} \), let's manipulate the numerator and denominator. Starting with the numerator: \[ 2.3^{n+1} + 3^{n+2} = 2 \cdot 3^{n+1} + 3^{n+2} = 3^{n+1} (2 + 3) = 3^{n+1} \cdot 5 \] Now for the denominator: \[ 2 \cdot 3^{n+5} + 3^{n} = 3^{n} (2 \cdot 3^{5} + 1) = 3^{n} (486) \quad \text{(since \(3^5 = 243\))} \] The expression now looks like this: \[ \frac{3^{n+1} \cdot 5}{3^{n} \cdot 486} \] Now we can simplify: \[ = \frac{5 \cdot 3^{n+1}}{486 \cdot 3^{n}} = \frac{5 \cdot 3}{486} = \frac{15}{486} \] This can be further simplified: \[ = \frac{5}{162} \] Thus, the simplified expression is: \[ \frac{5}{162} \]