Question
upstudy study bank question image url

\( \left. \begin{array} { l l } { f ^ { - 1 } ( x ) = \sqrt[ 3 ] { x } - 9 } & { \bigcirc f ^ { - 1 } ( x ) = \sqrt[ 3 ] { x - 9 } } \\ { f ^ { - 1 } ( x ) = ( x + 9 ) ^ { 3 } } & { \bigcirc f ^ { - 1 } ( x ) = x ^ { 3 } - 9 } \end{array} \right. \)

Ask by Wagner Crawford. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las funciones inversas correctas de \( f(x) = \sqrt[3]{x} - 9 \) son: - \( f^{-1}(x) = (x + 9)^3 \) - \( f^{-1}(x) = x^3 - 9 \) Las otras opciones no son funciones inversas correctas.

Solution

Para determinar cuál de las expresiones dadas es la función inversa correcta de \( f(x) = \sqrt[3]{x} - 9 \), analicemos cada una de las opciones proporcionadas: 1. **\( f^{-1}(x) = \sqrt[3]{x} - 9 \)** Esta expresión no es la función inversa, sino que en realidad es la función original \( f(x) \). 2. **\( \circ f^{-1}(x) = \sqrt[3]{x - 9} \)** Esta expresión indica que primero se resta 9 al valor de \( x \) y luego se aplica la raíz cúbica. Veamos si esto es correcto: Si \( y = f^{-1}(x) = \sqrt[3]{x - 9} \), entonces para encontrar la función inversa: \[ y^3 = x - 9 \implies x = y^3 + 9 \] Por lo tanto, la función inversa correcta debería ser \( f^{-1}(x) = x^3 + 9 \), no \( \sqrt[3]{x - 9} \). 3. **\( f^{-1}(x) = (x + 9)^3 \)** Esta expresión es la función inversa correcta. Verifiquemos: Dada \( y = f(x) = \sqrt[3]{x} - 9 \), para encontrar \( f^{-1}(x) \): \[ y + 9 = \sqrt[3]{x} \implies (y + 9)^3 = x \] Por lo tanto, \( f^{-1}(x) = (x + 9)^3 \) es la función inversa correcta. 4. **\( \circ f^{-1}(x) = x^3 - 9 \)** Esta expresión también representa una posible función inversa. Verifiquemos: Si \( y = f^{-1}(x) = x^3 - 9 \), entonces: \[ y + 9 = x^3 \implies x = \sqrt[3]{y + 9} \] Comparando con la función original \( f(x) = \sqrt[3]{x} - 9 \), vemos que esta expresión también es válida como función inversa. **Conclusión:** Las funciones inversas correctas de \( f(x) = \sqrt[3]{x} - 9 \) son: - \( f^{-1}(x) = (x + 9)^3 \) - \( f^{-1}(x) = x^3 - 9 \) Las expresiones \( f^{-1}(x) = \sqrt[3]{x} - 9 \) y \( \circ f^{-1}(x) = \sqrt[3]{x - 9} \) **no** son funciones inversas correctas de \( f(x) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that the concept of inverse functions dates back to the 17th century with mathematicians like René Descartes? He laid the groundwork for modern algebra, allowing us to manipulate and understand functions better. Inverse functions, in particular, have made it easier to solve equations and find values, revolutionizing fields like calculus and geometry! In the real world, inverse functions are used in various practical applications, such as computer graphics, physics, and economics. For instance, in computer graphics, understanding how to invert transformations allows artists and designers to manipulate objects in 3D space effectively. This understanding can lead to stunning visuals in movies and video games, making the world come alive with creativity!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy