5.(5 boda) Nadite integral vektorskog polja \( \vec{F}(\vec{r})=(x-y, z, x) \) po plbhi \( \vec{r}(t)= \) \( \left(1+t, t^{2}, 2\right), 0 \leq t \leq 2 \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Da bismo izračunali linijski integral vektorskog polja \(\vec{F}(\vec{r}) = (x - y, z, x)\) po krivulji definisanoj parametrizacijom \(\vec{r}(t) = (1 + t, t^2, 2)\) za \(0 \leq t \leq 2\), prvo treba da izračunamo \(\vec{F}(\vec{r}(t))\) i \(\vec{r}'(t)\). 1. Prvo, izračunajmo \(\vec{F}(\vec{r}(t))\): \[ x = 1 + t,\ y = t^2,\ z = 2 \] Dakle, \[ \vec{F}(\vec{r}(t)) = \left((1 + t) - t^2, 2, 1 + t\right) = (1 + t - t^2, 2, 1 + t) \] 2. Zatim, izračunajmo \(\vec{r}'(t)\): \[ \vec{r}'(t) = \left(\frac{d}{dt}(1 + t), \frac{d}{dt}(t^2), \frac{d}{dt}(2)\right) = (1, 2t, 0) \] 3. Sada možemo izračunati linijski integral: \[ \int_C \vec{F} \cdot d\vec{r} = \int_{0}^{2} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt \] Pomenuta tačka produkt je: \[ (1 + t - t^2, 2, 1 + t) \cdot (1, 2t, 0) = (1 + t - t^2) \cdot 1 + 2 \cdot 2t + (1 + t) \cdot 0 = 1 + t - t^2 + 4t = 1 + 5t - t^2 \] 4. Sada integrišemo: \[ \int_{0}^{2} (1 + 5t - t^2) dt \] Izračunajmo svaki deo: \[ \int_{0}^{2} 1 \,dt = [t]_{0}^{2} = 2 \] \[ \int_{0}^{2} 5t \,dt = \left[ \frac{5t^2}{2} \right]_{0}^{2} = \frac{5 \cdot 2^2}{2} - 0 = 10 \] \[ \int_{0}^{2} -t^2 \,dt = \left[-\frac{t^3}{3}\right]_{0}^{2} = -\frac{8}{3} + 0 = -\frac{8}{3} \] 5. Sada sabiramo sve rezultate: \[ \int_{0}^{2} (1 + 5t - t^2) dt = 2 + 10 - \frac{8}{3} = 12 - \frac{8}{3} = \frac{36}{3} - \frac{8}{3} = \frac{28}{3} \] Dakle, vrednost integrala je: \[ \frac{28}{3} \]