Question
upstudy study bank question image url

Derivar \[ \text { 1. } f(x)=3 x^{2}-3 x-1 \]

Ask by Gray Cole. in Puerto Rico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de la función \( f(x) = 3x^2 - 3x - 1 \) es \( f'(x) = 6x - 3 \).

Solution

Alright, I need to find the derivative of the function \( f(x) = 3x^2 - 3x - 1 \). Let's start by recalling the basic rules of differentiation. The derivative of a function gives the rate at which the function's value changes with respect to its variable, in this case, \( x \). First, I'll consider each term in the function separately. The function is a polynomial, so I can differentiate each term individually and then sum the results. 1. **Differentiating \( 3x^2 \):** - The power rule of differentiation states that \( \frac{d}{dx}x^n = n x^{n-1} \). - Applying this to \( 3x^2 \), the derivative is \( 3 \times 2x^{2-1} = 6x \). 2. **Differentiating \( -3x \):** - The derivative of \( x \) with respect to \( x \) is 1. - Therefore, the derivative of \( -3x \) is \( -3 \times 1 = -3 \). 3. **Differentiating \( -1 \):** - The derivative of a constant is always 0, since constants do not change as \( x \) changes. - So, the derivative of \( -1 \) is 0. Now, combining the derivatives of all terms: \[ f'(x) = 6x - 3 + 0 = 6x - 3 \] But wait, let me double-check to ensure I haven't missed anything. Another way to approach this is to use the limit definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Let's compute \( f(x+h) \): \[ f(x+h) = 3(x+h)^2 - 3(x+h) - 1 \] \[ = 3(x^2 + 2xh + h^2) - 3x - 3h - 1 \] \[ = 3x^2 + 6xh + 3h^2 - 3x - 3h - 1 \] Now, subtract \( f(x) \) from \( f(x+h) \): \[ f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 - 3x - 3h - 1) - (3x^2 - 3x - 1) \] \[ = 6xh + 3h^2 - 3h \] Divide by \( h \): \[ \frac{f(x+h) - f(x)}{h} = \frac{6xh + 3h^2 - 3h}{h} \] \[ = 6x + 3h - 3 \] Take the limit as \( h \to 0 \): \[ f'(x) = 6x - 3 \] This confirms my earlier result. Therefore, the derivative of \( f(x) = 3x^2 - 3x - 1 \) is indeed \( f'(x) = 6x - 3 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para derivar la función \( f(x) = 3x^{2} - 3x - 1 \), aplicamos la regla de potencia. La derivada de \( x^{n} \) es \( n \cdot x^{n-1} \). Así, el primer término se convierte en \( 6x \), el segundo en \( -3 \), y la derivada de la constante \( -1 \) es \( 0 \). Entonces, la derivada es: \[ f'(x) = 6x - 3. \] La derivada de una función nos ayuda a entender cómo se comporta la función y en qué puntos puede tener máximos o mínimos; es esencial en el estudio del cálculo y la optimización en diversas áreas. Además, al analizar la derivada, podemos determinar dónde la función crece o decrece. Por ejemplo, si establecemos \( f'(x) = 0 \) para encontrar los puntos críticos, eso nos puede indicar en qué valores de \( x \) la función alcanza sus extremos, lo cual es útil en aplicaciones de la vida real, como la maximización de beneficios o la minimización de costos en negocios.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy