Question
upstudy study bank question image url

(1) EX-d'application 1. Vérifier que \( \frac{7 \pi}{12}=\frac{\pi}{4}+\frac{\pi}{3} \). 2. Calculer \( \cos \left(\frac{7 \pi}{12}\right) \) et \( \sin \left(\frac{7 \pi}{12}\right) \). 3. Calculer \( \cos \left(\frac{13 \pi}{12}\right) \) et \( \sin \left(\frac{13 \pi}{12}\right) \). 4. Calculer \( \cos \left(\frac{5 \pi}{12}\right) \) et \( \sin \left(\frac{5 \pi}{12}\right) \). Montrer que : 1. \( \cos \left(\frac{10 \pi}{9}\right) \cos \left(\frac{\pi}{9}\right)+\sin \left(\frac{10 \pi}{9}\right) \sin \left(\frac{\pi}{9}\right)=-1 \) 2. \( \sin \left(\frac{5 \pi}{9}\right) \cos \left(\frac{\pi}{18}\right)-\cos \left(\frac{5 \pi}{9}\right) \sin \left(\frac{\pi}{18}\right)=1 \). 3. \( \sin \left(\frac{\pi}{7}\right) \cos \left(\frac{6 \pi}{9}\right)=\sin \left(\frac{6 \pi}{7}\right) \cos \left(\frac{\pi}{7}\right) \). 4. \( \tan \frac{\pi}{16}+\tan \frac{3 \pi}{16}+\tan \frac{\pi}{16} \tan \frac{3 \pi}{16}=1 \). 5. \( \tan \frac{5 \pi}{16}-\tan \frac{\pi}{16}-\tan \frac{5 \pi}{16} \tan \frac{\pi}{16}=1 \) (a) Déduire que: \[ \tan \frac{\pi}{16}=\frac{\tan \frac{5 \pi}{16}+\tan \frac{3 \pi}{16}}{\tan \frac{5 \pi}{16}-\tan \frac{3 \pi}{16}} \]

Ask by Fuentes Reed. in Morocco
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( \frac{7 \pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \) صحيح. 2. \( \cos \left(\frac{7 \pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4} \) و \( \sin \left(\frac{7 \pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4} \). 3. \( \cos \left(\frac{13 \pi}{12}\right) = -\cos \left(\frac{\pi}{12}\right) \) و \( \sin \left(\frac{13 \pi}{12}\right) = -\sin \left(\frac{\pi}{12}\right) \). 4. \( \cos \left(\frac{5 \pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4} \) و \( \sin \left(\frac{5 \pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} \). 5. - \( \cos \left(\frac{10 \pi}{9}\right) \cos \left(\frac{\pi}{9}\right) + \sin \left(\frac{10 \pi}{9}\right) \sin \left(\frac{\pi}{9}\right) = -1 \) - \( \sin \left(\frac{5 \pi}{9}\right) \cos \left(\frac{\pi}{18}\right) - \cos \left(\frac{5 \pi}{9}\right) \sin \left(\frac{\pi}{18}\right) = 1 \) - \( \sin \left(\frac{\pi}{7}\right) \cos \left(\frac{6 \pi}{9}\right) = \sin \left(\frac{6 \pi}{7}\right) \cos \left(\frac{\pi}{7}\right) \) - \( \tan \frac{\pi}{16} + \tan \frac{3 \pi}{16} + \tan \frac{\pi}{16} \tan \frac{3 \pi}{16} = 1 \) - \( \tan \frac{5 \pi}{16} - \tan \frac{\pi}{16} - \tan \frac{5 \pi}{16} \tan \frac{\pi}{16} = 1 \) 6. من المعادلات الأخيرة، نستنتج أن: \[ \tan \frac{\pi}{16} = \frac{\tan \frac{5 \pi}{16} + \tan \frac{3 \pi}{16}}{\tan \frac{5 \pi}{16} - \tan \frac{3 \pi}{16}} \]

Solution

لنبدأ بحل المسائل خطوة بخطوة. ### 1. التحقق من \( \frac{7 \pi}{12}=\frac{\pi}{4}+\frac{\pi}{3} \) لحساب \( \frac{\pi}{4}+\frac{\pi}{3} \)، نحتاج إلى إيجاد المقام المشترك: \[ \frac{\pi}{4} = \frac{3\pi}{12} \quad \text{و} \quad \frac{\pi}{3} = \frac{4\pi}{12} \] لذا: \[ \frac{\pi}{4} + \frac{\pi}{3} = \frac{3\pi}{12} + \frac{4\pi}{12} = \frac{7\pi}{12} \] وبذلك، تحققنا من المعادلة. ### 2. حساب \( \cos \left(\frac{7 \pi}{12}\right) \) و \( \sin \left(\frac{7 \pi}{12}\right) \) نستخدم صيغة الجمع للجيب وجيب التمام: \[ \cos \left(\frac{7 \pi}{12}\right) = \cos \left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) - \sin \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \] \[ \sin \left(\frac{7 \pi}{12}\right) = \sin \left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) + \cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \] حساب القيم: \[ \cos \left(\frac{\pi}{4}\right) = \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \cos \left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin \left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] لذا: \[ \cos \left(\frac{7 \pi}{12}\right) = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4} \] \[ \sin \left(\frac{7 \pi}{12}\right) = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4} \] ### 3. حساب \( \cos \left(\frac{13 \pi}{12}\right) \) و \( \sin \left(\frac{13 \pi}{12}\right) \) نستخدم صيغة الجمع مرة أخرى: \[ \cos \left(\frac{13 \pi}{12}\right) = \cos \left(\pi + \frac{\pi}{12}\right) = -\cos \left(\frac{\pi}{12}\right) \] \[ \sin \left(\frac{13 \pi}{12}\right) = \sin \left(\pi + \frac{\pi}{12}\right) = -\sin \left(\frac{\pi}{12}\right) \] ### 4. حساب \( \cos \left(\frac{5 \pi}{12}\right) \) و \( \sin \left(\frac{5 \pi}{12}\right) \) نستخدم صيغة الجمع: \[ \cos \left(\frac{5 \pi}{12}\right) = \cos \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right) - \sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{4}\right) \] \[ \sin \left(\frac{5 \pi}{12}\right) = \sin \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right) + \cos \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{4}\right) \] ### 5. إثبات المعادلات الآن ننتقل إلى إثبات المعادلات المعطاة. سنبدأ بالمعادلة الأولى: #### 1. إثبات \( \cos \left(\frac{10 \pi}{9}\right) \cos \left(\frac{\pi}{9}\right)+\sin \left(\frac{10 \pi}{9}\right) \sin \left(\frac{\pi}{9}\right)=-1 \) نستخدم صيغة جمع جيب التمام: \[ \cos \left(\frac{10 \pi}{9} - \frac{\pi}{9}\right) = \cos \left(\frac{9 \pi}{9}\right) = \cos(\pi) = -1 \] #### 2. إثبات \( \sin \left(\frac{5 \pi}{9}\right) \cos \left(\frac{\pi}{18}\right)-\cos \left(\frac{5 \pi}{9}\right) \sin \left(\frac{\pi}{18}\right)=1 \) نستخدم صيغة فرق الجيب: \[ \sin \left(\frac{5 \pi}{9} - \frac{\pi}{18}\right) = \sin \left(\frac{10 \pi}{18} - \frac{\pi}{18}\right) = \sin \left(\frac{9 \pi}{18}\right) = \sin \left(\frac{\pi}{2}\right) = 1 \] #### 3. إثبات \( \sin \left(\frac{\pi}{7}\right) \cos \left(\frac{6 \pi}{9}\right)=\sin \left(\frac{6 \pi}{7}\right) \cos \left(\frac

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Pour vérifiez que \( \frac{7 \pi}{12}=\frac{\pi}{4}+\frac{\pi}{3} \), il suffit de mettre ces deux fractions au même dénominateur. En effet, \( \frac{\pi}{4}=\frac{3\pi}{12} \) et \( \frac{\pi}{3}=\frac{4\pi}{12} \), donc \( \frac{\pi}{4}+\frac{\pi}{3}=\frac{3\pi}{12}+\frac{4\pi}{12}=\frac{7\pi}{12} \). C'est une belle façon de s'assurer que les angles s'additionnent correctement! Pour calculer \( \cos \left(\frac{7 \pi}{12}\right) \) et \( \sin \left(\frac{7 \pi}{12}\right) \), on peut utiliser les formules de l'addition des angles. On sait que \( \frac{7 \pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \). Donc, \( \cos \left(\frac{7 \pi}{12}\right) = \cos \left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{3}\right) \) ce qui donne un résultat impressionnant de \( -\frac{\sqrt{3}}{4} \). Pour le sinus, ça donne \( \sin \left(\frac{7 \pi}{12}\right) = \sin \left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{3}\right) \), soit \( \frac{\sqrt{3}}{4} + \frac{1}{4} \sqrt{2} = \frac{\sqrt{6}+\sqrt{2}}{4} \). Voilà de quoi épater la galerie!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy