Question
upstudy study bank question image url

a) \( \left[\frac{(-5)^{3}(-5)^{4}}{(-5)^{2}(-5)^{3}}\right]^{2} \)

Ask by Rogers Hart. in Colombia
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El resultado de la expresión es 625.

Solution

Para simplificar la expresión: \[ \left[\frac{(-5)^{3} \cdot (-5)^{4}}{(-5)^{2} \cdot (-5)^{3}}\right]^{2} \] **Paso 1:** Simplificamos los exponentes en el numerador y el denominador usando la propiedad de los exponentes \(a^{m} \cdot a^{n} = a^{m+n}\). \[ \frac{(-5)^{3} \cdot (-5)^{4}}{(-5)^{2} \cdot (-5)^{3}} = \frac{(-5)^{7}}{(-5)^{5}} \] **Paso 2:** Dividimos las potencias restando los exponentes \(a^{m} / a^{n} = a^{m-n}\). \[ \frac{(-5)^{7}}{(-5)^{5}} = (-5)^{2} \] **Paso 3:** Elevamos el resultado al cuadrado. \[ \left[(-5)^{2}\right]^{2} = (-5)^{4} \] **Paso 4:** Calculamos el valor numérico. \[ (-5)^{4} = 625 \] **Respuesta:** El valor de la expresión es **625**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let's break down the expression step-by-step! First, simplify the expression inside the brackets: \[ \frac{(-5)^{3}(-5)^{4}}{(-5)^{2}(-5)^{3}} = \frac{(-5)^{3+4}}{(-5)^{2+3}} = \frac{(-5)^{7}}{(-5)^{5}} = (-5)^{7-5} = (-5)^{2}. \] Now, we have: \[ \left[(-5)^{2}\right]^{2} = (-5)^{2 \cdot 2} = (-5)^{4}. \] Now calculate \((-5)^{4}\): \[ (-5)^{4} = 625. \] Therefore, the final answer is: \[ 625. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy