Question
a) \( \left[\frac{(-5)^{3}(-5)^{4}}{(-5)^{2}(-5)^{3}}\right]^{2} \)
Ask by Rogers Hart. in Colombia
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
El resultado de la expresión es 625.
Solution
Para simplificar la expresión:
\[
\left[\frac{(-5)^{3} \cdot (-5)^{4}}{(-5)^{2} \cdot (-5)^{3}}\right]^{2}
\]
**Paso 1:** Simplificamos los exponentes en el numerador y el denominador usando la propiedad de los exponentes \(a^{m} \cdot a^{n} = a^{m+n}\).
\[
\frac{(-5)^{3} \cdot (-5)^{4}}{(-5)^{2} \cdot (-5)^{3}} = \frac{(-5)^{7}}{(-5)^{5}}
\]
**Paso 2:** Dividimos las potencias restando los exponentes \(a^{m} / a^{n} = a^{m-n}\).
\[
\frac{(-5)^{7}}{(-5)^{5}} = (-5)^{2}
\]
**Paso 3:** Elevamos el resultado al cuadrado.
\[
\left[(-5)^{2}\right]^{2} = (-5)^{4}
\]
**Paso 4:** Calculamos el valor numérico.
\[
(-5)^{4} = 625
\]
**Respuesta:** El valor de la expresión es **625**.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
Let's break down the expression step-by-step! First, simplify the expression inside the brackets: \[ \frac{(-5)^{3}(-5)^{4}}{(-5)^{2}(-5)^{3}} = \frac{(-5)^{3+4}}{(-5)^{2+3}} = \frac{(-5)^{7}}{(-5)^{5}} = (-5)^{7-5} = (-5)^{2}. \] Now, we have: \[ \left[(-5)^{2}\right]^{2} = (-5)^{2 \cdot 2} = (-5)^{4}. \] Now calculate \((-5)^{4}\): \[ (-5)^{4} = 625. \] Therefore, the final answer is: \[ 625. \]