Question
upstudy study bank question image url

1. (a) Expand \( (1+2 y)^{10} \) in ascending powers of \( y \), up to and including the term \( y^{3} \). Hence evaluate \( (1.002)^{10} \) correct to 6 decimal places. (b) Express each of the following in the form \( \frac{x}{y} \), where \( x, y \in Z, y \neq 0 \) (i) \( 1.6666 \ldots \) (ii) \( \quad 2 . \overline{4} \overline{5} \) (c) If \( \alpha \) and \( \beta \) are the roots of the equation \( 6 x^{2}+2 x-3=0 \), find the value of \( \frac{a}{\beta}+\frac{\beta}{\alpha} \). 2. (a) Given that \( f(x)=\frac{x-1}{2 x^{2}+2 x-3} \) find (i) \( f(-1) \) and \( f\left(\frac{1}{2}\right) \) (ii) what values of \( x \) must be excluded from the domain? (2) (b) Given that the determinant of the matrix \( \left(\begin{array}{cc}2 & -5 \\ 1 & 5\end{array}\right) \) is equal to the determinant of the matrix \( \left(\begin{array}{cc}5 & x \\ 5 & 8\end{array}\right) \) find the value of \( x \). (3) (c) \( (x-1) \) and \( (x+1) \) are the factors of the expression \( f(x)=x^{3}+a x^{2}+b x+c \)

Ask by George Powers. in Zambia
Dec 10,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

(a) \( (1+2y)^{10} = 1 + 20y + 180y^2 + 960y^3 \); \( (1.002)^{10} \approx 1.029014 \) (b) \( 1.6666 \ldots = \frac{10}{3} \); \( 2.\overline{45} = \frac{27}{11} \) (c) \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = -\frac{1}{3} \)

Solution

### Problem 1 #### (a) Expand \( (1+2 y)^{10} \) in ascending powers of \( y \), up to and including the term \( y^{3} \). Hence evaluate \( (1.002)^{10} \) correct to 6 decimal places. **Solution:** To expand \( (1+2y)^{10} \) up to \( y^3 \), we use the binomial theorem: \[ (1+2y)^{10} = \sum_{k=0}^{10} \binom{10}{k} (2y)^k \] We only need the terms up to \( y^3 \): \[ (1+2y)^{10} = \binom{10}{0}(2y)^0 + \binom{10}{1}(2y)^1 + \binom{10}{2}(2y)^2 + \binom{10}{3}(2y)^3 \] \[ = 1 + 20y + 180y^2 + 960y^3 \] Now, to evaluate \( (1.002)^{10} \), we can use the binomial expansion for small \( y \): \[ (1 + 0.002)^{10} \approx 1 + 10 \cdot 0.002 + \frac{10 \cdot 9}{2} \cdot (0.002)^2 + \frac{10 \cdot 9 \cdot 8}{6 \cdot 2} \cdot (0.002)^3 \] \[ = 1 + 0.02 + 0.009 + 0.0000144 \] \[ = 1.0290144 \] Rounded to 6 decimal places: \[ 1.029014 \] #### (b) Express each of the following in the form \( \frac{x}{y} \), where \( x, y \in \mathbb{Z}, y \neq 0 \) (i) \( 1.6666 \ldots \) **Solution:** This is an infinite geometric series with the first term \( a = 1.6666 \) and the common ratio \( r = \frac{1}{6} \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] \[ S = \frac{1.6666}{1 - \frac{1}{6}} = \frac{1.6666}{\frac{5}{6}} = \frac{1.6666 \cdot 6}{5} = \frac{10}{3} \] So, \( 1.6666 \ldots = \frac{10}{3} \). (ii) \( 2.\overline{45} \) **Solution:** This is a repeating decimal. We can express it as: \[ 2.\overline{45} = 2 + 0.0\overline{45} \] The repeating part \( 0.0\overline{45} \) is the same as \( \frac{45}{99} \) (since \( 0.0\overline{45} = \frac{45}{100} + \frac{45}{10000} + \ldots \)). \[ 0.0\overline{45} = \frac{45}{99} = \frac{5}{11} \] So, \( 2.\overline{45} = 2 + \frac{5}{11} = \frac{22}{11} + \frac{5}{11} = \frac{27}{11} \). #### (c) If \( \alpha \) and \( \beta \) are the roots of the equation \( 6x^{2}+2x-3=0 \), find the value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \). **Solution:** Using Vieta's formulas, we know that for a quadratic equation \( ax^2 + bx + c = 0 \) with roots \( \alpha \) and \( \beta \): \[ \alpha + \beta = -\frac{b}{a}, \quad \alpha \beta = \frac{c}{a} \] For the equation \( 6x^2 + 2x - 3 = 0 \): \[ \alpha + \beta = -\frac{2}{6} = -\frac{1}{3}, \quad \alpha \beta = \frac{-3}{6} = -\frac{1}{2} \] We want to find:

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To expand \( (1+2y)^{10} \) up to \( y^3 \), we can use the Binomial Theorem. The first few terms are: \[ (1+2y)^{10} = \binom{10}{0}(1)^{10}(2y)^{0} + \binom{10}{1}(1)^{9}(2y)^{1} + \binom{10}{2}(1)^{8}(2y)^{2} + \binom{10}{3}(1)^{7}(2y)^{3} \] Calculating these gives us \( 1 + 20y + 180y^2 + 640y^3 \). To evaluate \( (1.002)^{10} \), we substitute \( y = 0.001 \): \[ (1.002)^{10} \approx 1 + 20(0.001) + 180(0.001)^2 + 640(0.001)^3 = 1 + 0.02 + 0.018 + 0.00064 \approx 1.03864 \] Let’s convert \( 1.6666 \ldots \) into a fraction! We set \( x = 1.6666\ldots \), then \( 10x = 16.6666\ldots \). By subtracting these two equations, \( 10x - x = 16.6666\ldots - 1.6666\ldots \), we get \( 9x = 15 \), thus \( x = \frac{15}{9} = \frac{5}{3} \). Now for \( 2. \overline{4} \overline{5} \), we set \( y = 2.454545\ldots \). Let’s isolate the decimal part. We multiply by 100, \( 100y = 245.4545\ldots \), and then subtract the two: \( 100y - y = 245.4545\ldots - 2.4545\ldots \) which gives us \( 99y = 243 \). Hence \( y = \frac{243}{99} = \frac{81}{33} = \frac{27}{11} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy