1. (a) Expand \( (1+2 y)^{10} \) in ascending powers of \( y \), up to and including the term \( y^{3} \). Hence evaluate \( (1.002)^{10} \) correct to 6 decimal places. (b) Express each of the following in the form \( \frac{x}{y} \), where \( x, y \in Z, y \neq 0 \) (i) \( 1.6666 \ldots \) (ii) \( \quad 2 . \overline{4} \overline{5} \) (c) If \( \alpha \) and \( \beta \) are the roots of the equation \( 6 x^{2}+2 x-3=0 \), find the value of \( \frac{a}{\beta}+\frac{\beta}{\alpha} \). 2. (a) Given that \( f(x)=\frac{x-1}{2 x^{2}+2 x-3} \) find (i) \( f(-1) \) and \( f\left(\frac{1}{2}\right) \) (ii) what values of \( x \) must be excluded from the domain? (2) (b) Given that the determinant of the matrix \( \left(\begin{array}{cc}2 & -5 \\ 1 & 5\end{array}\right) \) is equal to the determinant of the matrix \( \left(\begin{array}{cc}5 & x \\ 5 & 8\end{array}\right) \) find the value of \( x \). (3) (c) \( (x-1) \) and \( (x+1) \) are the factors of the expression \( f(x)=x^{3}+a x^{2}+b x+c \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To expand \( (1+2y)^{10} \) up to \( y^3 \), we can use the Binomial Theorem. The first few terms are: \[ (1+2y)^{10} = \binom{10}{0}(1)^{10}(2y)^{0} + \binom{10}{1}(1)^{9}(2y)^{1} + \binom{10}{2}(1)^{8}(2y)^{2} + \binom{10}{3}(1)^{7}(2y)^{3} \] Calculating these gives us \( 1 + 20y + 180y^2 + 640y^3 \). To evaluate \( (1.002)^{10} \), we substitute \( y = 0.001 \): \[ (1.002)^{10} \approx 1 + 20(0.001) + 180(0.001)^2 + 640(0.001)^3 = 1 + 0.02 + 0.018 + 0.00064 \approx 1.03864 \] Let’s convert \( 1.6666 \ldots \) into a fraction! We set \( x = 1.6666\ldots \), then \( 10x = 16.6666\ldots \). By subtracting these two equations, \( 10x - x = 16.6666\ldots - 1.6666\ldots \), we get \( 9x = 15 \), thus \( x = \frac{15}{9} = \frac{5}{3} \). Now for \( 2. \overline{4} \overline{5} \), we set \( y = 2.454545\ldots \). Let’s isolate the decimal part. We multiply by 100, \( 100y = 245.4545\ldots \), and then subtract the two: \( 100y - y = 245.4545\ldots - 2.4545\ldots \) which gives us \( 99y = 243 \). Hence \( y = \frac{243}{99} = \frac{81}{33} = \frac{27}{11} \).