Topshiriqlar (33-35) va javob variantlari (A-F) ni o'zaro moslashtiring. A) \( \frac{10}{3} \) Asosining radiusi \( 3 \sqrt{3} \) ga balandligi 5 ga teng bo'lgan konusga eng B) \( \frac{5}{3} \) katta hajmli silindr ichki chizilgan. ( \( \pi \approx 3 \) deb oling) [2,2 ball 33. Silindr balandligini toping. [2,2 ball] 34. Silindr asosining yuzini toping. [2,2 ball] 35. Silindr hajmini toping. C) 48 D) 24 E) 60 F) 120 36. \( \left(x^{2}-x+1\right)^{2}-10 x^{2}\left(x^{2}-x+1\right)+9 x^{4}=0 \) tenglamani yeching. [1,5 ball] a) Tenglamaning nechta haqiqiy ildizi bor? Javob: a) \( x=1 \) \( [1,7 \) ball \( ] \) b) Tenglamaning barcha haqiqiy ildizlari yig'indisini toping. Javob: b) \( \qquad \) 1.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Silindr balandligini topish uchun konus hajmini hisoblab, uni silindr hajmi bilan taqqoslash mumkin. Konus hajmi formulasi \( V = \frac{1}{3} \pi r^2 h \) orqali ifodalanadi, bu yerda \( r = 3\sqrt{3} \) va \( h = 5 \). Shunday qilib, konusning hajmi \( V = \frac{1}{3} \cdot \pi \cdot (3\sqrt{3})^2 \cdot 5 = \frac{1}{3} \cdot \pi \cdot 27 \cdot 5 = 45\pi \) ga teng bo'ladi. Silindr balandligi va radiusini bilgan holda, silindr hajmini olish uchun o'sha balandlikdan foydalaning. Silindr asosining yuzini topish uchun, agar silindr radiusi konus radiusiga teng bo'lsa, u holda uning asos yuzasi \( S = \pi r^2 \) formula orqali hisoblanadi. Silindrning radiusi uchun \( r = 3\sqrt{3} \) qo'llaniladi, shuning uchun asos yuzasi \( S = \pi \cdot (3\sqrt{3})^2 = 27\pi \) ga teng bo'ladi. Bu holda \( \pi \) ni 3 ga o'rnatganimizda, natija 81 ga teng bo'ladi, silindr yuzasini topish juda qiziqarli!