Question

In Exercises 25 and 26, simplify the expression. Write your answer using only positive exponents. 25. \( \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} \cdot\left(\frac{4 x y}{y^{3}}\right)^{2} \) 26. \( \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} \cdot\left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} \)

Ask by Morgan Nichols. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Simplify the expressions: For Exercise 25: \[ \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} \cdot\left(\frac{4 x y}{y^{3}}\right)^{2} = \frac{100y^{2}}{x^{10}} \] For Exercise 26: \[ \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} \cdot\left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} = \frac{16a^{21}}{27b^{46}} \]

Solution

Calculate or simplify the expression \( \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} \cdot\left(\frac{4 x y}{y^{3}}\right)^{2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{5x^{-4}y^{3}}{2x^{2}y^{0}}\right)^{2}\left(\frac{4xy}{y^{3}}\right)^{2}\) - step1: Multiply by \(a^{-n}:\) \(\left(\frac{5x^{-4}y^{3}x^{-2}y^{0}}{2}\right)^{2}\left(\frac{4xy}{y^{3}}\right)^{2}\) - step2: Evaluate the power: \(\left(\frac{5x^{-4}y^{3}x^{-2}\times 1}{2}\right)^{2}\left(\frac{4xy}{y^{3}}\right)^{2}\) - step3: Multiply the terms: \(\left(\frac{5x^{-6}y^{3}}{2}\right)^{2}\left(\frac{4xy}{y^{3}}\right)^{2}\) - step4: Rewrite the expression: \(\left(\frac{5y^{3}}{2x^{6}}\right)^{2}\left(\frac{4xy}{y^{3}}\right)^{2}\) - step5: Divide the terms: \(\left(\frac{5y^{3}}{2x^{6}}\right)^{2}\left(\frac{4x}{y^{2}}\right)^{2}\) - step6: Rewrite the expression: \(\frac{25y^{6}}{4x^{12}}\times \frac{16x^{2}}{y^{4}}\) - step7: Reduce the numbers: \(\frac{25y^{2}}{4x^{12}}\times 16x^{2}\) - step8: Reduce the fraction: \(\frac{25y^{2}}{x^{10}}\times 4\) - step9: Multiply the terms: \(\frac{25y^{2}\times 4}{x^{10}}\) - step10: Multiply the terms: \(\frac{100y^{2}}{x^{10}}\) Calculate or simplify the expression \( \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} \cdot\left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{2a^{0}b^{-4}}{b^{3}}\right)^{4}\left(\frac{a^{3}b^{-2}}{3b^{4}a^{-4}}\right)^{3}\) - step1: Multiply by \(a^{-n}:\) \(\left(\frac{2a^{0}b^{-4}}{b^{3}}\right)^{4}\left(\frac{a^{3}b^{-2}a^{4}b^{-4}}{3}\right)^{3}\) - step2: Evaluate the power: \(\left(\frac{2\times 1\times b^{-4}}{b^{3}}\right)^{4}\left(\frac{a^{3}b^{-2}a^{4}b^{-4}}{3}\right)^{3}\) - step3: Reduce the fraction: \(\left(\frac{2}{b^{7}}\right)^{4}\left(\frac{a^{3}b^{-2}a^{4}b^{-4}}{3}\right)^{3}\) - step4: Multiply: \(\left(\frac{2}{b^{7}}\right)^{4}\left(\frac{a^{7}b^{-6}}{3}\right)^{3}\) - step5: Rewrite the expression: \(\left(\frac{2}{b^{7}}\right)^{4}\left(\frac{a^{7}}{3b^{6}}\right)^{3}\) - step6: Evaluate the power: \(\frac{16}{b^{28}}\times \left(\frac{a^{7}}{3b^{6}}\right)^{3}\) - step7: Evaluate the power: \(\frac{16}{b^{28}}\times \frac{a^{21}}{27b^{18}}\) - step8: Multiply the terms: \(\frac{16a^{21}}{b^{28}\times 27b^{18}}\) - step9: Multiply the terms: \(\frac{16a^{21}}{27b^{46}}\) The simplified expression for Exercise 25 is \( \frac{100y^{2}}{x^{10}} \) and for Exercise 26 is \( \frac{16a^{21}}{27b^{46}} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expressions given in exercises 25 and 26, we will go step-by-step. **25.** First, we simplify each part of the expression separately. 1. For the first term: \[ \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} = \left(\frac{5}{2} \cdot \frac{y^3}{1} \cdot \frac{1}{x^{4} \cdot x^{2}}\right)^{2} = \left(\frac{5}{2} \cdot \frac{y^3}{x^{6}}\right)^{2} = \frac{25 y^{6}}{4 x^{12}} \] 2. For the second term: \[ \left(\frac{4 x y}{y^{3}}\right)^{2} = \left(\frac{4x y^{1}}{y^{3}}\right)^{2} = \left(\frac{4x}{y^{2}}\right)^{2} = \frac{16 x^{2}}{y^{4}} \] Now we combine: \[ \frac{25 y^{6}}{4 x^{12}} \cdot \frac{16 x^{2}}{y^{4}} = \frac{25 \cdot 16 \cdot y^{6-4} \cdot x^{2}}{4 \cdot x^{12}} = \frac{400 y^{2}}{4 x^{10}} = \frac{100 y^{2}}{x^{10}} \] Final answer for 25: \( \frac{100 y^{2}}{x^{10}} \) **26.** Similar steps as above: 1. For the first term: \[ \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} = \left(\frac{2 \cdot 1}{b^{-4} \cdot b^{3}}\right)^{4} = (2 b^{-1})^{4} = 16 b^{-4} \] 2. For the second term: \[ \left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} = \left(\frac{a^{3} b^{-2}}{3 b^{4} \cdot \frac{1}{a^{4}}}\right)^{3} = \left(\frac{a^{3 + 4}}{3 b^{4 + 2}}\right)^{3} = \left(\frac{a^{7}}{3 b^{6}}\right)^{3} = \frac{a^{21}}{27 b^{18}} \] Now we combine: \[ 16 b^{-4} \cdot \frac{a^{21}}{27 b^{18}} = \frac{16 a^{21}}{27 b^{22}} \] Final answer for 26: \( \frac{16 a^{21}}{27 b^{22}} \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy