In Exercises 25 and 26, simplify the expression. Write your answer using only positive exponents. 25. \( \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} \cdot\left(\frac{4 x y}{y^{3}}\right)^{2} \) 26. \( \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} \cdot\left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify the expressions given in exercises 25 and 26, we will go step-by-step. **25.** First, we simplify each part of the expression separately. 1. For the first term: \[ \left(\frac{5 x^{-4} y^{3}}{2 x^{2} y^{0}}\right)^{2} = \left(\frac{5}{2} \cdot \frac{y^3}{1} \cdot \frac{1}{x^{4} \cdot x^{2}}\right)^{2} = \left(\frac{5}{2} \cdot \frac{y^3}{x^{6}}\right)^{2} = \frac{25 y^{6}}{4 x^{12}} \] 2. For the second term: \[ \left(\frac{4 x y}{y^{3}}\right)^{2} = \left(\frac{4x y^{1}}{y^{3}}\right)^{2} = \left(\frac{4x}{y^{2}}\right)^{2} = \frac{16 x^{2}}{y^{4}} \] Now we combine: \[ \frac{25 y^{6}}{4 x^{12}} \cdot \frac{16 x^{2}}{y^{4}} = \frac{25 \cdot 16 \cdot y^{6-4} \cdot x^{2}}{4 \cdot x^{12}} = \frac{400 y^{2}}{4 x^{10}} = \frac{100 y^{2}}{x^{10}} \] Final answer for 25: \( \frac{100 y^{2}}{x^{10}} \) **26.** Similar steps as above: 1. For the first term: \[ \left(\frac{2 a^{0} b^{-4}}{b^{3}}\right)^{4} = \left(\frac{2 \cdot 1}{b^{-4} \cdot b^{3}}\right)^{4} = (2 b^{-1})^{4} = 16 b^{-4} \] 2. For the second term: \[ \left(\frac{a^{3} b^{-2}}{3 b^{4} a^{-4}}\right)^{3} = \left(\frac{a^{3} b^{-2}}{3 b^{4} \cdot \frac{1}{a^{4}}}\right)^{3} = \left(\frac{a^{3 + 4}}{3 b^{4 + 2}}\right)^{3} = \left(\frac{a^{7}}{3 b^{6}}\right)^{3} = \frac{a^{21}}{27 b^{18}} \] Now we combine: \[ 16 b^{-4} \cdot \frac{a^{21}}{27 b^{18}} = \frac{16 a^{21}}{27 b^{22}} \] Final answer for 26: \( \frac{16 a^{21}}{27 b^{22}} \)