Question
lim_(x-> 7^{-}) f(x)=2 and lim_(x-> 7^{+}) f(x)=2, but f(7)=-2. What can you say about lim_(x->7)f(x)?
Ask by Schneider Harrington.
Mar 23,2025 20:18
Upstudy AI Solution
Tutor-Verified Answer
Answer
The function \( f(x) \) has a removable discontinuity at \( x=7 \) because the limit as \( x \) approaches 7 is 2, but \( f(7) \) is -2. To fix this, we can redefine \( f(7) \) to be 2.
Solution
Sign in to Unlock Answers for Free! ![]()
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock Answered by UpStudy AI and reviewed by a Professional Tutor
Like
Beyond the Answer
In this scenario, we see an interesting feature of limits and continuity! The fact that \(\lim_{x \rightarrow 7} f(x) = 2\) and \(\lim_{x \rightarrow 7^{+}} f(x) = 2\) tells us that as \(x\) approaches 7 from the left or the right, the function \(f(x)\) is approaching 2. However, \(f(7) = -2\) indicates a discontinuity at that point, making \(f(x)\) not continuous at \(x = 7\). This is a classic example that shows limits can exist even when the function itself does not behave nicely at that point!
Understanding such cases helps solidify the concept of pointwise limits in real analysis. In real-world applications, similar behaviors can arise in systems where expected outcomes differ from actual results, such as in economic models or engineering simulations where certain inputs yield surprising outputs. For instance, a material might behave predictably under certain temperatures, but a specific threshold could cause a break in that expected behavior—akin to reaching your limit!
Related Questions
Find all critical points of the following function.
\( f(x, y)=\frac{x^{3}}{3}-\frac{y^{3}}{3}+9 x y \)
What are the critical points? Select the correct choice below and fill in any answer boxes within your choice.
A. The critical point(s) is/are
(Type an ordered pair. Use a comma to separate answers as needed.)
B. There are no critical points.
Calculus
Mar 18, 2025
(c) \( f: x \rightarrow \frac{1}{z-2}, z=2 \)
\( g: x \rightarrow 6 x+1 \)
Cari/ Find:
(ii) fg
(iii) \( g f \)
Calculus
Mar 19, 2025
1. Алғашқы функциясының жалпы турін табыңыз: f(x)=2x^{5}-3x^{2}
A) frac{x^{6}}{3}-x^{3}+C
B) frac{x^{6}}{3}-x^{2}+C
C) frac{x^{6}}{6}-x^{3}+C
D) 10x^{4}-6x+C
2. Апғашқы функциясының жалпы турін табыңыз: f(x)=frac{2}{x}+frac{3}{x^{2}}
A) ln x-frac{3}{x}+C
B) x-frac{3}{x}+C
C) 2ln x-frac{3}{x}+C
D) 2ln x+frac{3}{x}+C
3. f(x)=5 x^{2}-3 дің алғашқы функциясы ушін F(1)=7 орындалады. Алғашқы функцияны табыңыз:
A) frac{5}{3}x^{3}-3x-frac{37}{3}
B) frac{5}{3}x^{3}+3x+frac{37}{3}
C) frac{5}{3}x^{3}-3x+frac{25}{3}
D) frac{5}{3}x^{3}-3x+frac{27}{3}
4. Алғашқы функциясының жалпы турін табыңыз: f(x)=1+3e^{x}-4cosx
A) x+e^{x}-4sinx+C
B) x+3e^{x}+4sinx+C
C) 3e^{x}-4sinx+C
D) x+3e^{x}-4sinx+C
5. Апғашқы функциясының жалпы турін табыңыз: f(x)=(x-2)^{4}
A) frac{(x-2)^{3}}{6}+C
B) frac{(x-2)^{5}}{5}+C
C) frac{(x-2)^{3}}{3}+C
D) frac{(x-2)^{4}}{4}+C
6. Есептеңіз: ∫ ((1+cos ^{2}x)/(cos^{2}x))dx
A) 1/cos ^{2}x+x+C
B) -x/tgx+x+C
C) -sin^{2}x+x+C
D) tgx+x+C
Calculus
Mar 21, 2025