Question
upstudy study bank question image url

c) The force of interest at time \( t \) is given by: \[ \delta(t)=\left\{\begin{array}{cl}0.01+0.01 t, & 0 \leq t<4 \\ 0.15-0.003 t, & 4 \leq t<6 \\ 0.06 & t \geq 6\end{array}\right. \] 1. Find an expression for the value at time \( t=0 \) of a payment of 100 at time \( t \)

Ask by Floyd Harris. in Kenya
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

For \( 0 \leq t < 4 \): \[ V(0) = 100 e^{-(0.01 t + 0.005 t^2)} \] For \( 4 \leq t < 6 \): \[ V(0) = 100 e^{-(0.15 t - 0.0015 t^2 - 0.456)} \] For \( t \geq 6 \): \[ V(0) = 100 e^{-(0.06t + 0.03)} \]

Solution

To find the present value of a payment of 100 at time \( t \) given the force of interest \( \delta(t) \), we need to use the relationship between the force of interest and the accumulated value. The present value \( V(0) \) of a payment \( P \) at time \( t \) can be expressed as: \[ V(0) = P e^{-\int_0^t \delta(s) \, ds} \] In this case, \( P = 100 \). We will need to evaluate the integral \( \int_0^t \delta(s) \, ds \) for different intervals of \( t \) based on the piecewise definition of \( \delta(t) \). ### Step 1: Determine the intervals for \( t \) 1. **For \( 0 \leq t < 4 \)**: \[ \delta(t) = 0.01 + 0.01 t \] 2. **For \( 4 \leq t < 6 \)**: \[ \delta(t) = 0.15 - 0.003 t \] 3. **For \( t \geq 6 \)**: \[ \delta(t) = 0.06 \] ### Step 2: Calculate the integral for each interval #### Case 1: \( 0 \leq t < 4 \) We need to calculate: \[ \int_0^t (0.01 + 0.01 s) \, ds \] Calculating the integral: \[ \int_0^t (0.01 + 0.01 s) \, ds = \int_0^t 0.01 \, ds + \int_0^t 0.01 s \, ds \] Calculating each part: 1. \(\int_0^t 0.01 \, ds = 0.01 t\) 2. \(\int_0^t 0.01 s \, ds = 0.01 \cdot \frac{s^2}{2} \bigg|_0^t = 0.01 \cdot \frac{t^2}{2} = 0.005 t^2\) Combining these results: \[ \int_0^t (0.01 + 0.01 s) \, ds = 0.01 t + 0.005 t^2 \] Thus, the present value is: \[ V(0) = 100 e^{-(0.01 t + 0.005 t^2)} \] #### Case 2: \( 4 \leq t < 6 \) We need to calculate: \[ \int_0^4 (0.01 + 0.01 s) \, ds + \int_4^t (0.15 - 0.003 s) \, ds \] The first integral (from 0 to 4) is: \[ \int_0^4 (0.01 + 0.01 s) \, ds = 0.01 \cdot 4 + 0.005 \cdot 4^2 = 0.04 + 0.08 = 0.12 \] Now for the second integral (from 4 to \( t \)): \[ \int_4^t (0.15 - 0.003 s) \, ds = \left(0.15 s - 0.0015 s^2\right) \bigg|_4^t \] Calculating this: \[ = \left(0.15 t - 0.0015 t^2\right) - \left(0.15 \cdot 4 - 0.0015 \cdot 16\right) \] \[ = 0.15 t - 0.0015 t^2 - (0.6 - 0.024) = 0.15 t - 0.0015 t^2 - 0.576 \] Combining both parts: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.15 t - 0.0015 t^2 - 0.576 = 0.15 t - 0.0015 t^2 - 0.456 \] Thus, the present value is: \[ V(0) = 100 e^{-(0.15 t - 0.0015 t^2 - 0.456)} \] #### Case 3: \( t \geq 6 \) We need to calculate: \[ \int_0^4 (0.01 + 0.01 s) \, ds + \int_4^6 (0.15 - 0.003 s) \, ds + \int_6^t 0.06 \, ds \] The first integral (from 0 to 4) is \( 0.12 \) as calculated before. The second integral (from 4 to 6): \[ \int_4^6 (0.15 - 0.003 s) \, ds = \left(0.15 s - 0.0015 s^2\right) \bigg|_4^6 \] Calculating this: \[ = \left(0.15 \cdot 6 - 0.0015 \cdot 36\right) - \left(0.15 \cdot 4 - 0.0015 \cdot 16\right) \] \[ = (0.9 - 0.054) - (0.6 - 0.024) = 0.846 - 0.576 = 0.27 \] Now for the third integral (from 6 to \( t \)): \[ \int_6^t 0.06 \, ds = 0.06(t - 6) \] Combining all parts: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.27 + 0.06(t - 6) = 0.39 + 0.06t - 0.36 = 0.06t + 0.03 \] Thus, the present value is: \[ V(0) = 100 e^{-(0.06t + 0.03)} \] ### Summary of Results 1. For \( 0 \leq t < 4 \): \[ V(0) = 100 e^{-(0.01 t + 0.005 t^2)} \] 2. For \( 4 \leq t < 6 \): \[ V(0) = 100 e^{-(0.15 t - 0.0015 t^2 -

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the present value of a payment of 100 at time \( t \) based on the force of interest function \( \delta(t) \), we can use the formula: \[ V(0, t) = 100 e^{-\int_0^t \delta(s) \, ds} \] We'll compute the integral of \( \delta(t) \) over different intervals. 1. For \( 0 \leq t < 4 \): \[ \int_0^t \delta(s) \, ds = \int_0^t (0.01 + 0.01s) \, ds = \left[0.01s + 0.005s^2\right]_0^t = 0.01t + 0.005t^2 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.01t + 0.005t^2)} \] 2. For \( 4 \leq t < 6 \): We need to split the integral: \[ \int_0^4 \delta(s) \, ds + \int_4^t (0.15 - 0.003s) \, ds \] First, compute the first part: \[ \int_0^4 \delta(s) \, ds = 0.01 \cdot 4 + 0.005 \cdot 16 = 0.04 + 0.08 = 0.12 \] Now compute the second part: \[ \int_4^t (0.15 - 0.003s) \, ds = \left[0.15s - 0.0015s^2\right]_4^t = (0.15t - 0.0015t^2) - (0.6 - 0.024) = 0.15t - 0.0015t^2 + 0.576 \] Adding them together gives: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.15t - 0.0015t^2 + 0.576 = 0.15t - 0.0015t^2 + 0.696 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.15t - 0.0015t^2 + 0.696)} \] 3. For \( t \geq 6 \): We again split the integral: \[ \int_0^4 \delta(s) \, ds + \int_4^6 (0.15 - 0.003s) \, ds + \int_6^t 0.06 \, ds \] We have already found \( \int_0^4 \delta(s) \, ds = 0.12 \) and compute: \[ \int_4^6 (0.15 - 0.003s) \, ds = \left[0.15s - 0.0015s^2\right]_4^6 \] Calculating: \[ = (0.15 \cdot 6 - 0.0015 \cdot 36) - (0.6 - 0.024) = (0.9 - 0.054) - 0.576 = 0.27 \] Now check the third part: \[ \int_6^t 0.06 \, ds = 0.06(t - 6) \] Adding these gives: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.27 + 0.06(t - 6) = 0.39 + 0.06t - 0.36 = 0.06t + 0.03 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.06t + 0.03)} \] In summary, we have: - For \( 0 \leq t < 4 \): \[ V(0, t) = 100 e^{-(0.01t + 0.005t^2)} \] - For \( 4 \leq t < 6 \): \[ V(0, t) = 100 e^{-(0.15t - 0.0015t^2 + 0.696)} \] - For \( t \geq 6 \): \[ V(0, t

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy