Encuentre el valor exacto de \( \cos 75^{\circ} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Para encontrar el valor exacto de \( \cos 75^{\circ} \), podemos utilizar la fórmula de la suma de ángulos. Observamos que \( 75^{\circ} = 45^{\circ} + 30^{\circ} \). Así, podemos aplicar: \[ \cos(75^{\circ}) = \cos(45^{\circ} + 30^{\circ}) = \cos(45^{\circ})\cos(30^{\circ}) - \sin(45^{\circ})\sin(30^{\circ}) \] Sabemos que: - \( \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \) - \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \) - \( \sin(45^{\circ}) = \frac{\sqrt{2}}{2} \) - \( \sin(30^{\circ}) = \frac{1}{2} \) Sustituyendo estos valores tenemos: \[ \cos(75^{\circ}) = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \] Por lo tanto, el valor exacto de \( \cos 75^{\circ} \) es \( \frac{\sqrt{6} - \sqrt{2}}{4} \).