Answer
The system of equations does not have a real solution for any of the given systems.
Solution
Solve the system of equations \( (1-i)z+(1+i)\omega=3;2z-(2+5i)\omega=2+3i \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}\left(1-i\right)z+\left(1+i\right)\omega =3\\2z-\left(2+5i\right)\omega =2+3i\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}\left(1-i\right)z+\left(1+i\right)\omega =3\\2z+\left(-2-5i\right)\omega =2+3i\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}\omega =\frac{3}{2}\\2z+\left(-2-5i\right)\omega =2+3i\end{array}\right.\)
- step3: Substitute the value of \(\omega:\)
\(2z+\left(-2-5i\right)\times \frac{3}{2}=2+3i\)
- step4: Multiply the numbers:
\(2z-3-\frac{15}{2}i=2+3i\)
- step5: Move the constant to the right side:
\(2z=2+3i+3+\frac{15}{2}i\)
- step6: Add the numbers:
\(2z=5+\frac{21}{2}i\)
- step7: Divide both sides:
\(\frac{2z}{2}=\frac{5+\frac{21}{2}i}{2}\)
- step8: Divide the numbers:
\(z=\frac{5}{2}+\frac{21}{4}i\)
- step9: Calculate:
\(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\)
- step10: Calculate:
\(\left(\omega,z\right) \notin \mathbb{R}^{2}\)
- step11: Alternative Form:
\(\textrm{No real solution}\)
Solve the system of equations \( 2iz+(3-2i)\omega=1+i;(1-2i)z+(3+2i)\omega=5+6i \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2iz+\left(3-2i\right)\omega =1+i\\\left(1-2i\right)z+\left(3+2i\right)\omega =5+6i\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}\omega =\frac{1}{3}\\\left(1-2i\right)z+\left(3+2i\right)\omega =5+6i\end{array}\right.\)
- step2: Substitute the value of \(\omega:\)
\(\left(1-2i\right)z+\left(3+2i\right)\times \frac{1}{3}=5+6i\)
- step3: Multiply the numbers:
\(\left(1-2i\right)z+1+\frac{2}{3}i=5+6i\)
- step4: Move the constant to the right side:
\(\left(1-2i\right)z=5+6i-\left(1+\frac{2}{3}i\right)\)
- step5: Subtract the terms:
\(\left(1-2i\right)z=4+\frac{16}{3}i\)
- step6: Divide both sides:
\(\frac{\left(1-2i\right)z}{1-2i}=\frac{4+\frac{16}{3}i}{1-2i}\)
- step7: Divide the numbers:
\(z=-\frac{4}{3}+\frac{8}{3}i\)
- step8: Calculate:
\(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\)
- step9: Calculate:
\(\left(\omega,z\right) \notin \mathbb{R}^{2}\)
- step10: Alternative Form:
\(\textrm{No real solution}\)
Solve the system of equations \( \frac{3}{i}z-(6+2i)\omega=5;\frac{i}{2}z+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega=\left(\frac{1}{2}+2i\right) \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}\frac{3}{i}\times z-\left(6+2i\right)\omega =5\\\frac{i}{2}z+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}-3iz+\left(-6-2i\right)\omega =5\\\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}\omega =-\frac{5}{6}\\\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\)
- step3: Substitute the value of \(\omega:\)
\(\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\left(-\frac{5}{6}\right)=\frac{1}{2}+2i\)
- step4: Multiply the numbers:
\(\frac{1}{2}iz-\frac{5}{8}+\frac{5}{12}i=\frac{1}{2}+2i\)
- step5: Move the constant to the right side:
\(\frac{1}{2}iz=\frac{1}{2}+2i+\frac{5}{8}-\frac{5}{12}i\)
- step6: Add the numbers:
\(\frac{1}{2}iz=\frac{9}{8}+\frac{19}{12}i\)
- step7: Divide both sides:
\(\frac{\frac{1}{2}iz}{\frac{1}{2}i}=\frac{\frac{9}{8}+\frac{19}{12}i}{\frac{1}{2}i}\)
- step8: Divide the numbers:
\(z=\frac{19}{6}-\frac{9}{4}i\)
- step9: Calculate:
\(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\)
- step10: Calculate:
\(\left(\omega,z\right) \notin \mathbb{R}^{2}\)
- step11: Alternative Form:
\(\textrm{No real solution}\)
Solve the system of equations \( \frac{1}{1-i}z+(1+i)\omega=3;\frac{2}{i}z-(2-3i)\omega=2+6i \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}\frac{1}{1-i}\times z+\left(1+i\right)\omega =3\\\frac{2}{i}\times z-\left(2-3i\right)\omega =2+6i\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}\left(\frac{1}{2}+\frac{1}{2}i\right)z+\left(1+i\right)\omega =3\\-2iz+\left(-2+3i\right)\omega =2+6i\end{array}\right.\)
- step2: Calculate:
\(\left\{ \begin{array}{l}\omega \in \varnothing \\z \in \varnothing \end{array}\right.\)
- step3: Rewrite:
\((\omega, z) \in \varnothing\)
The simultaneous system of linear equations with complex coefficients does not have a real solution for any of the given systems.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution