Question
upstudy study bank question image url

4. Solve the simultaneous system of linear equations with complex coe (i) \( (1-i) z+(1+i) \omega=3 ; \quad 2 z-(2+5 i) \omega=2+3 i \) (ii) \( 2 i z+(3-2 i) \omega=1+i ; \quad(1-2 i) z+(3+2 i) \omega=5+6 i \) (iii) \( \frac{3}{i} z-(6+2 i) \omega=5 ; \quad \frac{i}{2} z+\left(\frac{3}{4}-\frac{1}{2} i\right) \omega=\left(\frac{1}{2}+2 i\right) \) (iv) \( \frac{1}{1-i} z+(1+i) \omega=3 ; \quad \frac{2}{i} z-(2-3 i) \omega=2+6 i \)

Ask by Stuart Wood. in Pakistan
Dec 17,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The system of equations does not have a real solution for any of the given systems.

Solution

Solve the system of equations \( (1-i)z+(1+i)\omega=3;2z-(2+5i)\omega=2+3i \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\left(1-i\right)z+\left(1+i\right)\omega =3\\2z-\left(2+5i\right)\omega =2+3i\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}\left(1-i\right)z+\left(1+i\right)\omega =3\\2z+\left(-2-5i\right)\omega =2+3i\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}\omega =\frac{3}{2}\\2z+\left(-2-5i\right)\omega =2+3i\end{array}\right.\) - step3: Substitute the value of \(\omega:\) \(2z+\left(-2-5i\right)\times \frac{3}{2}=2+3i\) - step4: Multiply the numbers: \(2z-3-\frac{15}{2}i=2+3i\) - step5: Move the constant to the right side: \(2z=2+3i+3+\frac{15}{2}i\) - step6: Add the numbers: \(2z=5+\frac{21}{2}i\) - step7: Divide both sides: \(\frac{2z}{2}=\frac{5+\frac{21}{2}i}{2}\) - step8: Divide the numbers: \(z=\frac{5}{2}+\frac{21}{4}i\) - step9: Calculate: \(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\) - step10: Calculate: \(\left(\omega,z\right) \notin \mathbb{R}^{2}\) - step11: Alternative Form: \(\textrm{No real solution}\) Solve the system of equations \( 2iz+(3-2i)\omega=1+i;(1-2i)z+(3+2i)\omega=5+6i \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2iz+\left(3-2i\right)\omega =1+i\\\left(1-2i\right)z+\left(3+2i\right)\omega =5+6i\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}\omega =\frac{1}{3}\\\left(1-2i\right)z+\left(3+2i\right)\omega =5+6i\end{array}\right.\) - step2: Substitute the value of \(\omega:\) \(\left(1-2i\right)z+\left(3+2i\right)\times \frac{1}{3}=5+6i\) - step3: Multiply the numbers: \(\left(1-2i\right)z+1+\frac{2}{3}i=5+6i\) - step4: Move the constant to the right side: \(\left(1-2i\right)z=5+6i-\left(1+\frac{2}{3}i\right)\) - step5: Subtract the terms: \(\left(1-2i\right)z=4+\frac{16}{3}i\) - step6: Divide both sides: \(\frac{\left(1-2i\right)z}{1-2i}=\frac{4+\frac{16}{3}i}{1-2i}\) - step7: Divide the numbers: \(z=-\frac{4}{3}+\frac{8}{3}i\) - step8: Calculate: \(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\) - step9: Calculate: \(\left(\omega,z\right) \notin \mathbb{R}^{2}\) - step10: Alternative Form: \(\textrm{No real solution}\) Solve the system of equations \( \frac{3}{i}z-(6+2i)\omega=5;\frac{i}{2}z+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega=\left(\frac{1}{2}+2i\right) \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{3}{i}\times z-\left(6+2i\right)\omega =5\\\frac{i}{2}z+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}-3iz+\left(-6-2i\right)\omega =5\\\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}\omega =-\frac{5}{6}\\\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\omega =\frac{1}{2}+2i\end{array}\right.\) - step3: Substitute the value of \(\omega:\) \(\frac{1}{2}iz+\left(\frac{3}{4}-\frac{1}{2}i\right)\left(-\frac{5}{6}\right)=\frac{1}{2}+2i\) - step4: Multiply the numbers: \(\frac{1}{2}iz-\frac{5}{8}+\frac{5}{12}i=\frac{1}{2}+2i\) - step5: Move the constant to the right side: \(\frac{1}{2}iz=\frac{1}{2}+2i+\frac{5}{8}-\frac{5}{12}i\) - step6: Add the numbers: \(\frac{1}{2}iz=\frac{9}{8}+\frac{19}{12}i\) - step7: Divide both sides: \(\frac{\frac{1}{2}iz}{\frac{1}{2}i}=\frac{\frac{9}{8}+\frac{19}{12}i}{\frac{1}{2}i}\) - step8: Divide the numbers: \(z=\frac{19}{6}-\frac{9}{4}i\) - step9: Calculate: \(\left\{ \begin{array}{l}\omega \notin \mathbb{R}\\z \notin \mathbb{R}\end{array}\right.\) - step10: Calculate: \(\left(\omega,z\right) \notin \mathbb{R}^{2}\) - step11: Alternative Form: \(\textrm{No real solution}\) Solve the system of equations \( \frac{1}{1-i}z+(1+i)\omega=3;\frac{2}{i}z-(2-3i)\omega=2+6i \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{1}{1-i}\times z+\left(1+i\right)\omega =3\\\frac{2}{i}\times z-\left(2-3i\right)\omega =2+6i\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}\left(\frac{1}{2}+\frac{1}{2}i\right)z+\left(1+i\right)\omega =3\\-2iz+\left(-2+3i\right)\omega =2+6i\end{array}\right.\) - step2: Calculate: \(\left\{ \begin{array}{l}\omega \in \varnothing \\z \in \varnothing \end{array}\right.\) - step3: Rewrite: \((\omega, z) \in \varnothing\) The simultaneous system of linear equations with complex coefficients does not have a real solution for any of the given systems.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the simultaneous system of linear equations with complex coefficients, we can first represent each system as a matrix equation of the form \(A\begin{pmatrix} z \\ \omega \end{pmatrix} = B\), where \(A\) is the coefficient matrix, and \(B\) is the constant matrix. For example, consider part (i): 1. \( (1-i) z+(1+i) \omega=3 \) can be written as \( (1-i)z + (1+i)\omega = 3\) 2. \( 2 z-(2+5i) \omega=2+3i \) appears as \( 2z - (2+5i)\omega = 2 + 3i\) From here, you would write the equations in matrix form and proceed to find the inverse of the matrix \(A\) (if the determinant is not zero) to obtain \( \begin{pmatrix} z \\ \omega \end{pmatrix} = A^{-1}B \). Now, moving on to solving with substitution or elimination for the rest of your systems, you're bound to encounter some exciting complex numbers! Just remember that combining, splitting into real and imaginary parts, and ultimately unraveling those variables can lead to some eye-popping results! For each system, try simplifying your matrices first, and keep an eagle eye out for common factors. It’s quite the mathematical adventure! And never underestimate the power of checking your work through substitution back into the original equations; it can save you from small mistakes that can derail a solution amidst those complex calculations. Happy solving!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy