Answer
For \( f(x) = x^{3} - 14x - 4 \):
- **End Behavior:** As \( x \to +\infty \), \( f(x) \to +\infty \); as \( x \to -\infty \), \( f(x) \to -\infty \).
- **Number of Turning Points:** 2.
For \( g(x) = 5 - 17x^{7} + 9x^{10} \):
- **End Behavior:** As \( x \to +\infty \) and \( x \to -\infty \), \( g(x) \to +\infty \).
- **Number of Turning Points:** 1.
Solution
Let's analyze each polynomial function to determine their end behavior and the number of turning points.
---
### **3. \( f(x) = x^{3} - 14x - 4 \)**
**a. End Behavior:**
- **Degree:** The polynomial is of degree **3**, which is **odd**.
- **Leading Coefficient:** The coefficient of \( x^3 \) is **1** (positive).
For an odd-degree polynomial with a positive leading coefficient:
- **As \( x \to +\infty \), \( f(x) \to +\infty \)**
- **As \( x \to -\infty \), \( f(x) \to -\infty \)**
**b. Number of Turning Points:**
- **Maximum Turning Points:** For a polynomial of degree \( n \), the maximum number of turning points is \( n-1 \). Here, \( 3-1 = 2 \).
- **Verification:**
- **First Derivative:** \( f'(x) = 3x^2 - 14 \)
- **Critical Points:** Set \( f'(x) = 0 \):
\[
3x^2 - 14 = 0 \implies x^2 = \frac{14}{3} \implies x = \pm \sqrt{\frac{14}{3}}
\]
- There are **two distinct real critical points**, indicating **two turning points**.
**Summary for \( f(x) \):**
- **End Behavior:**
- \( x \to +\infty \Rightarrow f(x) \to +\infty \)
- \( x \to -\infty \Rightarrow f(x) \to -\infty \)
- **Turning Points:** **2**
---
### **4. \( g(x) = 5 - 17x^{7} + 9x^{10} \)**
**a. End Behavior:**
- **Degree:** The polynomial is of degree **10**, which is **even**.
- **Leading Coefficient:** The coefficient of \( x^{10} \) is **9** (positive).
For an even-degree polynomial with a positive leading coefficient:
- **As \( x \to +\infty \), \( g(x) \to +\infty \)**
- **As \( x \to -\infty \), \( g(x) \to +\infty \)**
**b. Number of Turning Points:**
- **Maximum Turning Points:** For a polynomial of degree \( n \), the maximum number of turning points is \( n-1 = 10-1 = 9 \).
- **Determining the Actual Number:**
- **First Derivative:** \( g'(x) = 90x^{9} - 119x^{6} \)
- **Critical Points:** Set \( g'(x) = 0 \):
\[
90x^{9} - 119x^{6} = x^{6}(90x^{3} - 119) = 0
\]
- \( x = 0 \) (with multiplicity **6**) and \( x = \left(\frac{119}{90}\right)^{1/3} \)
- **Analyzing Sign Changes:**
- For \( x < \left(\frac{119}{90}\right)^{1/3} \), \( g'(x) < 0 \) (function is decreasing).
- At \( x = \left(\frac{119}{90}\right)^{1/3} \), \( g'(x) = 0 \) (local minimum).
- For \( x > \left(\frac{119}{90}\right)^{1/3} \), \( g'(x) > 0 \) (function is increasing).
- Therefore, there is **only one real turning point**.
**Summary for \( g(x) \):**
- **End Behavior:**
- \( x \to +\infty \Rightarrow g(x) \to +\infty \)
- \( x \to -\infty \Rightarrow g(x) \to +\infty \)
- **Turning Points:** **1**
---
### **Final Summary:**
1. **For \( f(x) = x^{3} - 14x - 4 \):**
- **End Behavior:**
- \( x \to +\infty \Rightarrow f(x) \to +\infty \)
- \( x \to -\infty \Rightarrow f(x) \to -\infty \)
- **Number of Turning Points:** **2**
2. **For \( g(x) = 5 - 17x^{7} + 9x^{10} \):**
- **End Behavior:**
- \( x \to +\infty \Rightarrow g(x) \to +\infty \)
- \( x \to -\infty \Rightarrow g(x) \to +\infty \)
- **Number of Turning Points:** **1**
---
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution