Question
upstudy study bank question image url

a) \( f(x)=x^{3}-6 x^{2}-63 x \)

Ask by Horton Boone. in Turkmenistan
Jan 17,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Корни функции \( f(x) = x^{3} - 6x^{2} - 63x \) равны \( x = 0 \), \( x = 3 - 6\sqrt{2} \) и \( x = 3 + 6\sqrt{2} \).

Solution

Данное уравнение \( f(x) = x^{3} - 6x^{2} - 63x \) представляет собой кубическую функцию. Чтобы найти корни этой функции, нам нужно решить уравнение \( f(x) = 0 \). Давайте найдем корни функции \( f(x) \) методом факторинга: Factor the expression by following steps: - step0: Factor: \(x^{3}-6x^{2}-63x\) - step1: Factor the expression: \(x\left(x^{2}-6x-63\right)\) Мы не можем факторизовать квадратное уравнение \( x^{2} - 6x - 63 = 0 \) напрямую. Давайте попробуем найти корни квадратного уравнения методом квадратичной формулы: Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x^{2}-6x-63=0\) - step1: Solve using the quadratic formula: \(x=\frac{6\pm \sqrt{\left(-6\right)^{2}-4\left(-63\right)}}{2}\) - step2: Simplify the expression: \(x=\frac{6\pm \sqrt{288}}{2}\) - step3: Simplify the expression: \(x=\frac{6\pm 12\sqrt{2}}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{6+12\sqrt{2}}{2}\\&x=\frac{6-12\sqrt{2}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=3+6\sqrt{2}\\&x=\frac{6-12\sqrt{2}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=3+6\sqrt{2}\\&x=3-6\sqrt{2}\end{align}\) - step7: Rewrite: \(x_{1}=3-6\sqrt{2},x_{2}=3+6\sqrt{2}\) Корни квадратного уравнения \( x^{2} - 6x - 63 = 0 \) равны \( x_{1} = 3 - 6\sqrt{2} \) и \( x_{2} = 3 + 6\sqrt{2} \). Следовательно, корни функции \( f(x) = x^{3} - 6x^{2} - 63x \) равны \( x = 0 \), \( x = 3 - 6\sqrt{2} \) и \( x = 3 + 6\sqrt{2} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that polynomials like \( f(x) = x^{3} - 6x^{2} - 63x \) are the mathematical backbone of many real-world phenomena? From modeling the height of a thrown ball to predicting population growth, cubic functions can give us an insight into various dynamics in nature! When solving for the roots of cubic functions, a common mistake is overlooking factoring techniques. Begin by factoring out the greatest common factor—here it's \( x \)—to simplify: \( f(x) = x(x^{2} - 6x - 63) \). This conversion makes it easier to find the roots using the quadratic formula or further factoring!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy