Question
upstudy study bank question image url

\( \lim _{x \rightarrow 1} \frac{|x-1|}{x-1}=\square \) Question Help: Submit Question Jump to Answer

Ask by Peterson Barrett. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit does not exist.

Solution

Calculate the limit \( \lim_{x\rightarrow 1} \frac{|x-1|}{x-1} \). Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow 1}\left(\frac{\left|x-1\right|}{x-1}\right)\) - step1: Evaluate the left-hand and the right-hand limits: \(\begin{align}&\lim _{x\rightarrow 1^{-}}\left(\frac{\left|x-1\right|}{x-1}\right)\\&\lim _{x\rightarrow 1^{+}}\left(\frac{\left|x-1\right|}{x-1}\right)\end{align}\) - step2: Evaluate the left-hand limit: \(\begin{align}&-1\\&1\end{align}\) - step3: Limit does not exist: \(\textrm{The limit does not exist}\) The limit of \( \frac{|x-1|}{x-1} \) as \( x \) approaches 1 does not exist.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate \( \lim _{x \rightarrow 1} \frac{|x-1|}{x-1} \), we need to consider the behavior of the function as \( x \) approaches 1 from both sides. When \( x \) approaches 1 from the left (i.e., \( x < 1 \)), \( |x-1| = -(x-1) \), so: \[ \lim _{x \rightarrow 1^-} \frac{|x-1|}{x-1} = \lim _{x \rightarrow 1^-} \frac{-(x-1)}{x-1} = \lim _{x \rightarrow 1^-} -1 = -1. \] When \( x \) approaches 1 from the right (i.e., \( x > 1 \)), \( |x-1| = x-1 \), therefore: \[ \lim _{x \rightarrow 1^+} \frac{|x-1|}{x-1} = \lim _{x \rightarrow 1^+} \frac{x-1}{x-1} = \lim _{x \rightarrow 1^+} 1 = 1. \] Since the left-hand limit and right-hand limit do not match, the overall limit does not exist. Thus, the limit is: \[ \lim _{x \rightarrow 1} \frac{|x-1|}{x-1} = \text{undefined or does not exist.} \]

Related Questions

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy