Question
Note: You need to have your calculator in radians (RAD) mode for this task (since the angles are given in radians - i.e., π is featured). a) A current waveform in a robotic arm may be described by... i_s=13 cos (2πft-(π/4))(A), where frequency, f=1Hz and t represents time. Make time (t) the subject of this formula and hence determine a point in time when the current waveform has a magnitude of +10A .
Ask by Tran Reyes.
Mar 27,2025 15:24
Upstudy AI Solution
Tutor-Verified Answer
Answer
A specific time when the current is +10 A is approximately 0.0139 seconds.
Solution
Sign in to Unlock Answers for Free! ![]()
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock Answered by UpStudy AI and reviewed by a Professional Tutor
Like
Mind Expander
To make time \( t \) the subject of the formula, we start with the equation:
\[
\mathrm{i}_{\mathrm{s}}=13 \cos \left(2 \pi \mathrm{ft}-\frac{\pi}{4}\right)
\]
Setting \( \mathrm{i}_{\mathrm{s}} = 10 \), we have:
\[
10 = 13 \cos \left(2 \pi (1)t - \frac{\pi}{4}\right)
\]
Now, dividing both sides by 13 gives us:
\[
\frac{10}{13} = \cos \left(2 \pi t - \frac{\pi}{4}\right)
\]
Next, we take the inverse cosine (arccos) of both sides:
\[
2 \pi t - \frac{\pi}{4} = \cos^{-1}\left(\frac{10}{13}\right)
\]
Solving for \( t \):
\[
2 \pi t = \cos^{-1}\left(\frac{10}{13}\right) + \frac{\pi}{4}
\]
\[
t = \frac{1}{2\pi} \left(\cos^{-1}\left(\frac{10}{13}\right) + \frac{\pi}{4}\right)
\]
Calculating \( \cos^{-1}\left(\frac{10}{13}\right) \):
Using a calculator, we find:
\[
\cos^{-1}\left(\frac{10}{13}\right) \approx 0.4901 \, \text{radians}
\]
So we can substitute this value back in:
\[
t \approx \frac{1}{2\pi} \left(0.4901 + 0.7854\right)
\]
\[
t \approx \frac{1}{2\pi} \cdot 1.2755 \approx 0.2034 \, \text{seconds}
\]
Thus, a point in time when the current waveform has a magnitude of +10 A is approximately \( t \approx 0.2034 \, \text{seconds} \).
Related Questions
2.
\( \cos 116^{\circ} \)
Answer:
\( \frac{1}{1-m} \)
\( \sqrt{1-m^{2}} \)
\( -\sqrt{1-m^{2}} \)
\( -m \)
Final check
Trigonometry
Mar 14, 2025
Questăo 2 - Valor \( (0,8) \)
Em um dia ensolarado, Ricardo percebeu que está se protegendo do Sol em uma sombra provinda de um
muro que está na sua frente. Nesse momento, ele se afastou do muro até o limite da área onde a sombra
cobre todo seu corpo, de modo que, se ele andar para trás, mesmo que muito pouco, o Sol já poderá ser
sentido na ponta superior de sua cabeça. Sabe-se que o ângulo que a visăo de Ricardo percorre para olhar
diretamente para frente até o topo do muro é de \( 30^{\circ} \).
Considere \( \sqrt{3}=1,7 \). Sabendo que Ricardo tem 1,80 metro de altura e está a 3,4 metros de distância do muro,
qual é a altura do muro, em metro, que proporciona a sombra para Ricardo?
(Sugestâo: Fazer um esboço do desenho)
a) 1,8
b) 2,0
c) 3,8
d) 4,0
e) 4,5
Trigonometry
Mar 21, 2025
Damar is buying a new windsail for his sailboat. The triangular sail is
attached between a vertical pole that creates a \( 90^{\circ} \) angle to the boat
a horizontal pole that is attached at the bottom of the vertical pole. If th
vertical pole is 22 feet tall and the horizontal pole is 8 feet, what is the
angle of the sail that is formed at the top of the vertical pole? Round yo
answer to the nearest whole degree. (1 point)
The angle is approximately \( 70 \times \) Check answer Remaining Attempts :2
Trigonometry
Mar 11, 2025
The point \( P(x, y) \) is on the terminal ray of angle \( \theta \). If \( \theta \) is between \( \pi \) radians and \( \frac{3 \pi}{2} \) radians and \( \csc \theta=-\frac{5}{2} \), what are the
coordinates of \( P(x, y) \) ?
\( P(-\sqrt{21},-2) \)
\( P(\sqrt{21},-2) \)
\( P(-2, \sqrt{21}) \)
\( P(-2,-\sqrt{21}) \)
Trigonometry
Mar 22, 2025