Answer
The solutions are:
1. \( x = 2 \)
2. \( x = -\frac{3}{25} \)
3. \( x = \frac{2}{3} \)
4. \( x = \frac{1}{5} \)
5. \( x = -\frac{3}{2} \)
Solution
Let's solve each of the given exponential equations step by step.
---
### **Problem (1)**
\[ 9^{x+1} = 27^{x} \]
**Step 1:** Express both sides with the same base.
- \( 9 = 3^2 \)
- \( 27 = 3^3 \)
So, the equation becomes:
\[ (3^2)^{x+1} = (3^3)^x \]
**Step 2:** Apply the power of a power rule \((a^m)^n = a^{mn}\):
\[ 3^{2(x+1)} = 3^{3x} \]
**Step 3:** Since the bases are the same, set the exponents equal to each other:
\[ 2(x + 1) = 3x \]
\[ 2x + 2 = 3x \]
**Step 4:** Solve for \( x \):
\[ 3x - 2x = 2 \]
\[ x = 2 \]
---
### **Problem (2)**
\[ 16^{x} \cdot 2^{x+1} = \sqrt[5]{4} \]
**Step 1:** Express all terms with base 2.
- \( 16 = 2^4 \)
- \( 4 = 2^2 \)
- \( \sqrt[5]{4} = 4^{1/5} = (2^2)^{1/5} = 2^{2/5} \)
So, the equation becomes:
\[ (2^4)^x \cdot 2^{x+1} = 2^{2/5} \]
**Step 2:** Apply the power of a power rule:
\[ 2^{4x} \cdot 2^{x+1} = 2^{2/5} \]
**Step 3:** Combine the exponents on the left side:
\[ 2^{4x + x + 1} = 2^{2/5} \]
\[ 2^{5x + 1} = 2^{2/5} \]
**Step 4:** Set the exponents equal to each other:
\[ 5x + 1 = \frac{2}{5} \]
**Step 5:** Solve for \( x \):
\[ 5x = \frac{2}{5} - 1 \]
\[ 5x = \frac{2}{5} - \frac{5}{5} \]
\[ 5x = -\frac{3}{5} \]
\[ x = -\frac{3}{25} \]
---
### **Problem (3)**
\[ \sqrt[3]{9} = (\sqrt{3})^{2x} \]
**Step 1:** Simplify both sides.
- \( \sqrt[3]{9} = 9^{1/3} = (3^2)^{1/3} = 3^{2/3} \)
- \( \sqrt{3} = 3^{1/2} \), so \( (\sqrt{3})^{2x} = (3^{1/2})^{2x} = 3^{x} \)
So, the equation becomes:
\[ 3^{2/3} = 3^{x} \]
**Step 2:** Since the bases are the same, set the exponents equal:
\[ \frac{2}{3} = x \]
\[ x = \frac{2}{3} \]
---
### **Problem (4)**
\[ 8^{-x} - 2 \cdot 4^{x-1} = 0 \]
**Step 1:** Express all terms with base 2.
- \( 8 = 2^3 \)
- \( 4 = 2^2 \)
So, the equation becomes:
\[ (2^3)^{-x} - 2 \cdot (2^2)^{x-1} = 0 \]
**Step 2:** Apply the power of a power rule:
\[ 2^{-3x} - 2 \cdot 2^{2(x-1)} = 0 \]
\[ 2^{-3x} - 2 \cdot 2^{2x - 2} = 0 \]
**Step 3:** Simplify the second term:
\[ 2 \cdot 2^{2x - 2} = 2^{1} \cdot 2^{2x - 2} = 2^{2x - 1} \]
So, the equation becomes:
\[ 2^{-3x} - 2^{2x - 1} = 0 \]
**Step 4:** Set the exponents equal since the bases are the same:
\[ -3x = 2x - 1 \]
**Step 5:** Solve for \( x \):
\[ -3x - 2x = -1 \]
\[ -5x = -1 \]
\[ x = \frac{1}{5} \]
\[ x = \frac{1}{5} \]
---
### **Problem (5)**
\[ 3^{x+1} = \frac{\sqrt{3}}{3} \]
**Step 1:** Simplify the right side.
- \( \sqrt{3} = 3^{1/2} \)
So,
\[ \frac{\sqrt{3}}{3} = \frac{3^{1/2}}{3^{1}} = 3^{1/2 - 1} = 3^{-1/2} \]
**Step 2:** The equation becomes:
\[ 3^{x+1} = 3^{-1/2} \]
**Step 3:** Since the bases are the same, set the exponents equal:
\[ x + 1 = -\frac{1}{2} \]
**Step 4:** Solve for \( x \):
\[ x = -\frac{1}{2} - 1 \]
\[ x = -\frac{3}{2} \]
\[ x = -\frac{3}{2} \]
---
### **Summary of Solutions:**
1. **Problem (1):** \( x = 2 \)
2. **Problem (2):** \( x = -\frac{3}{25} \)
3. **Problem (3):** \( x = \frac{2}{3} \)
4. **Problem (4):** \( x = \frac{1}{5} \)
5. **Problem (5):** \( x = -\frac{3}{2} \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution