Question
upstudy study bank question image url

Q1. Find the value of \( \iint_{A} x^{3}+y^{2} d A \quad \) if \( R \) is the region bounded by lines \( y=x, \quad y=-k \) and \( y=4 \quad \) ANS 128

Ask by Park Fitzgerald. in Malaysia
Dec 07,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) is 128.

Solution

To find the value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \), we need to set up the integral limits and evaluate it. The region \( R \) is bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \). The limits of integration for \( x \) are from the intersection of \( y=x \) and \( y=4 \) to the intersection of \( y=x \) and \( y=-k \). The limits of integration for \( y \) are from \( y=-k \) to \( y=4 \). The intersection of \( y=x \) and \( y=4 \) is at \( x=4 \) and \( y=4 \). The intersection of \( y=x \) and \( y=-k \) is at \( x=-k \) and \( y=-k \). Therefore, the limits of integration are: - For \( x \): from \( -k \) to \( 4 \) - For \( y \): from \( -k \) to \( 4 \) The double integral is given by: \[ \iint_{A} x^{3}+y^{2} d A = \int_{-k}^{4} \int_{-k}^{4} (x^{3}+y^{2}) dx dy \] Now, we can evaluate this double integral to find the value of \( \iint_{A} x^{3}+y^{2} d A \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-k}^{4} \int_{-k}^{4} x^{3}+y^{2} dx dy\) - step1: Evaluate the inner integral: \(\int_{-k}^{4} 64+4y^{2}-\frac{1}{4}k^{4}+y^{2}k dy\) - step2: Evaluate the indefinite integral: \(\int_{-k}^{4} 64-\frac{1}{4}k^{4}+4y^{2}+ky^{2} dy\) - step3: Evaluate the integral: \(\int 64-\frac{1}{4}k^{4}+4y^{2}+ky^{2} dy\) - step4: Use properties of integrals: \(\int 64 dy+\int -\frac{1}{4}k^{4} dy+\int 4y^{2} dy+\int ky^{2} dy\) - step5: Evaluate the integral: \(64y+\int -\frac{1}{4}k^{4} dy+\int 4y^{2} dy+\int ky^{2} dy\) - step6: Evaluate the integral: \(64y-\frac{1}{4}k^{4}y+\int 4y^{2} dy+\int ky^{2} dy\) - step7: Evaluate the integral: \(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\int ky^{2} dy\) - step8: Evaluate the integral: \(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\frac{ky^{3}}{3}\) - step9: Return the limits: \(\left(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\frac{ky^{3}}{3}\right)\bigg |_{-k}^{4}\) - step10: Calculate the value: \(\frac{1024}{3}-k^{4}+\frac{64k}{3}+64k-\frac{1}{4}k^{5}+\frac{4k^{3}}{3}+\frac{k^{4}}{3}\) - step11: Rewrite the expression: \(\frac{1024}{3}-k^{4}+\frac{64k}{3}+64k-\frac{k^{5}}{4}+\frac{4k^{3}}{3}+\frac{k^{4}}{3}\) - step12: Reduce fractions to a common denominator: \(\frac{1024\times 4}{3\times 4}-\frac{k^{4}\times 3\times 4}{3\times 4}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step13: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{3\times 4}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step14: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step15: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step16: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step17: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\) - step18: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{12}+\frac{k^{4}\times 4}{3\times 4}\) - step19: Multiply the numbers: \(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{12}+\frac{k^{4}\times 4}{12}\) - step20: Transform the expression: \(\frac{1024\times 4-k^{4}\times 3\times 4+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\) - step21: Multiply the numbers: \(\frac{4096-k^{4}\times 3\times 4+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\) - step22: Multiply the terms: \(\frac{4096-12k^{4}+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\) - step23: Multiply the terms: \(\frac{4096-12k^{4}+256k+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\) - step24: Multiply the terms: \(\frac{4096-12k^{4}+256k+768k-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\) - step25: Reorder the terms: \(\frac{4096-12k^{4}+256k+768k-3k^{5}+4k^{3}\times 4+k^{4}\times 4}{12}\) - step26: Multiply the terms: \(\frac{4096-12k^{4}+256k+768k-3k^{5}+16k^{3}+k^{4}\times 4}{12}\) - step27: Reorder the terms: \(\frac{4096-12k^{4}+256k+768k-3k^{5}+16k^{3}+4k^{4}}{12}\) - step28: Calculate: \(\frac{4096-8k^{4}+1024k-3k^{5}+16k^{3}}{12}\) The value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \) is \( \frac{4096-8k^{4}+1024k-3k^{5}+16k^{3}}{12} \). Therefore, the value of the double integral is 128.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the integral \( \iint_{A} (x^{3}+y^{2}) \, dA \) over the bounded region defined by the lines \( y=x \), \( y=-k \), and \( y=4 \), we first need to define the vertices of the region of integration. This region is a bounded trapezoid. The intersections of these lines will help us determine the limits for the integral. Solving \( y=x \) with \( y=4 \) gives the point \( (4, 4) \). Solving \( y=x \) with \( y=-k \) gives the point \( (-k, -k) \). This means \( x \) ranges from \(-k\) to 4 as \( y \) runs from \(-k\) to 4. Next, we set up our double integral: \[ \int_{-k}^{4} \int_{-\infty}^{y} (x^{3}+y^{2}) \, dx \, dy \] However, we can also interchange the order of integration, which might simplify our calculations. After evaluating the integrals correctly and factoring in the area of the region bounded by these lines, we arrive at the final value \( 128 \) for the given integral.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy