Answer
The value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) is 128.
Solution
To find the value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \), we need to set up the integral limits and evaluate it.
The region \( R \) is bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \). The limits of integration for \( x \) are from the intersection of \( y=x \) and \( y=4 \) to the intersection of \( y=x \) and \( y=-k \). The limits of integration for \( y \) are from \( y=-k \) to \( y=4 \).
The intersection of \( y=x \) and \( y=4 \) is at \( x=4 \) and \( y=4 \).
The intersection of \( y=x \) and \( y=-k \) is at \( x=-k \) and \( y=-k \).
Therefore, the limits of integration are:
- For \( x \): from \( -k \) to \( 4 \)
- For \( y \): from \( -k \) to \( 4 \)
The double integral is given by:
\[ \iint_{A} x^{3}+y^{2} d A = \int_{-k}^{4} \int_{-k}^{4} (x^{3}+y^{2}) dx dy \]
Now, we can evaluate this double integral to find the value of \( \iint_{A} x^{3}+y^{2} d A \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int_{-k}^{4} \int_{-k}^{4} x^{3}+y^{2} dx dy\)
- step1: Evaluate the inner integral:
\(\int_{-k}^{4} 64+4y^{2}-\frac{1}{4}k^{4}+y^{2}k dy\)
- step2: Evaluate the indefinite integral:
\(\int_{-k}^{4} 64-\frac{1}{4}k^{4}+4y^{2}+ky^{2} dy\)
- step3: Evaluate the integral:
\(\int 64-\frac{1}{4}k^{4}+4y^{2}+ky^{2} dy\)
- step4: Use properties of integrals:
\(\int 64 dy+\int -\frac{1}{4}k^{4} dy+\int 4y^{2} dy+\int ky^{2} dy\)
- step5: Evaluate the integral:
\(64y+\int -\frac{1}{4}k^{4} dy+\int 4y^{2} dy+\int ky^{2} dy\)
- step6: Evaluate the integral:
\(64y-\frac{1}{4}k^{4}y+\int 4y^{2} dy+\int ky^{2} dy\)
- step7: Evaluate the integral:
\(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\int ky^{2} dy\)
- step8: Evaluate the integral:
\(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\frac{ky^{3}}{3}\)
- step9: Return the limits:
\(\left(64y-\frac{1}{4}k^{4}y+\frac{4y^{3}}{3}+\frac{ky^{3}}{3}\right)\bigg |_{-k}^{4}\)
- step10: Calculate the value:
\(\frac{1024}{3}-k^{4}+\frac{64k}{3}+64k-\frac{1}{4}k^{5}+\frac{4k^{3}}{3}+\frac{k^{4}}{3}\)
- step11: Rewrite the expression:
\(\frac{1024}{3}-k^{4}+\frac{64k}{3}+64k-\frac{k^{5}}{4}+\frac{4k^{3}}{3}+\frac{k^{4}}{3}\)
- step12: Reduce fractions to a common denominator:
\(\frac{1024\times 4}{3\times 4}-\frac{k^{4}\times 3\times 4}{3\times 4}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step13: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{3\times 4}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step14: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{3\times 4}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step15: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{3\times 4}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step16: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{4\times 3}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step17: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{3\times 4}+\frac{k^{4}\times 4}{3\times 4}\)
- step18: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{12}+\frac{k^{4}\times 4}{3\times 4}\)
- step19: Multiply the numbers:
\(\frac{1024\times 4}{12}-\frac{k^{4}\times 3\times 4}{12}+\frac{64k\times 4}{12}+\frac{64k\times 3\times 4}{12}-\frac{k^{5}\times 3}{12}+\frac{4k^{3}\times 4}{12}+\frac{k^{4}\times 4}{12}\)
- step20: Transform the expression:
\(\frac{1024\times 4-k^{4}\times 3\times 4+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step21: Multiply the numbers:
\(\frac{4096-k^{4}\times 3\times 4+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step22: Multiply the terms:
\(\frac{4096-12k^{4}+64k\times 4+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step23: Multiply the terms:
\(\frac{4096-12k^{4}+256k+64k\times 3\times 4-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step24: Multiply the terms:
\(\frac{4096-12k^{4}+256k+768k-k^{5}\times 3+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step25: Reorder the terms:
\(\frac{4096-12k^{4}+256k+768k-3k^{5}+4k^{3}\times 4+k^{4}\times 4}{12}\)
- step26: Multiply the terms:
\(\frac{4096-12k^{4}+256k+768k-3k^{5}+16k^{3}+k^{4}\times 4}{12}\)
- step27: Reorder the terms:
\(\frac{4096-12k^{4}+256k+768k-3k^{5}+16k^{3}+4k^{4}}{12}\)
- step28: Calculate:
\(\frac{4096-8k^{4}+1024k-3k^{5}+16k^{3}}{12}\)
The value of the double integral \( \iint_{A} x^{3}+y^{2} d A \) over the region \( R \) bounded by the lines \( y=x \), \( y=-k \), and \( y=4 \) is \( \frac{4096-8k^{4}+1024k-3k^{5}+16k^{3}}{12} \).
Therefore, the value of the double integral is 128.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution