1. \( -3 p+q=0 \) \( 2 p-q=1 \) Solve the following simultaneous linear equations using the matrix method.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the simultaneous equations using the matrix method, we can represent the equations in matrix form as \( AX = B \), where \[ A = \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}, X = \begin{pmatrix} p \\ q \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \] We can calculate the inverse of matrix \( A \) and then find \( X \) using \( X = A^{-1}B \). The determinant of \( A \) is \( (-3)(-1) - (2)(1) = 3 - 2 = 1 \), which is non-zero, so we can find the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} -1 & -1 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 2 & -3 \end{pmatrix} \] Now, multiplying \( A^{-1} \) by \( B \): \[ X = \begin{pmatrix} -1 & -1 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \] Thus, we find \( p = -1 \) and \( q = -3 \).