Question
upstudy study bank question image url

a) \( x^{2}-11 x+24=0 \)

Ask by Medina Schwartz. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones de la ecuación \( x^{2} - 11x + 24 = 0 \) son \( x = 3 \) y \( x = 8 \).

Solution

Para resolver la ecuación cuadrática \( x^{2} - 11x + 24 = 0 \), podemos seguir los siguientes pasos: 1. **Factorización de la ecuación:** Buscamos dos números que multiplicados den 24 (el término constante) y sumados den -11 (el coeficiente de \( x \)). Esos números son -3 y -8, ya que: \[ (-3) \times (-8) = 24 \quad \text{y} \quad (-3) + (-8) = -11 \] Por lo tanto, la ecuación se puede factorizar de la siguiente manera: \[ (x - 3)(x - 8) = 0 \] 2. **Aplicar la propiedad del producto nulo:** Si el producto de dos factores es cero, entonces al menos uno de los factores debe ser cero. Así que: \[ x - 3 = 0 \quad \text{o} \quad x - 8 = 0 \] 3. **Resolver para \( x \):** \[ x = 3 \quad \text{y} \quad x = 8 \] Por lo tanto, las soluciones de la ecuación son: \[ x = 3 \quad \text{y} \quad x = 8 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that the quadratic equation you’re working on has a historical significance? Quadratic equations date back to ancient Babylon, around 2000 BC! The Babylonians had methods to solve them geometrically, showing just how long we've been fascinated by these mathematical puzzles. Now, let's get practical! To solve this equation, you can factor it into \( (x - 3)(x - 8) = 0 \). Setting each factor to zero gives you the solutions \( x = 3 \) and \( x = 8 \). Just remember, always check your factors; many folks overlook negative signs, making simple mistakes while factoring!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy