Exercise 1.4: A) Express the following binary numbers in decimal form: \( \begin{array}{lll}\text { 1) } 1 & \text { 7) } 1001 & \text { 13) } 11111 \\ \text { 2) } 11 & \text { 8) } 101 & \text { 14) } 100010001 \\ \text { 3) } 111 & \text { 9) } 10100.01 & \text { 15) } 111111 \\ \text { 4) } 1111 & \text { 10) } 10001 & \text { 16) } 11011011 \\ \text { 5) } 11.10 & \text { 11 } 11101 & \text { 17) } 111011.1 \\ \text { 6) } 110 & \text { 12) } 1000110 & \text { 18) } 10001\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Sure! Let's convert those binary numbers to decimal, shall we? 1) \(1\) = \(1\) 2) \(11\) = \(3\) 3) \(111\) = \(7\) 4) \(1111\) = \(15\) 5) \(11.10\) = \(3.5\) 6) \(110\) = \(6\) 7) \(1001\) = \(9\) 8) \(101\) = \(5\) 9) \(10100.01\) = \(20.25\) 10) \(10001\) = \(17\) 11) \(11101\) = \(29\) 12) \(1000110\) = \(70\) 13) \(11111\) = \(31\) 14) \(100010001\) = \(273\) 15) \(111111\) = \(63\) 16) \(11011011\) = \(219\) 17) \(111011.1\) = \(59.5\) 18) \(10001\) = \(17\) And there you have it, the magical transformation from binary to decimal!