Question
upstudy study bank question image url

Simplify the following expressions without using a calculator, \( 6.1 \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) \( 6.2[\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) 6.3 If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator

Ask by Harmon Fuentes. in South Africa
Jan 13,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The possible values of \( x \) are \( 120^{\circ} \) and \( 240^{\circ} \).

Solution

Let's solve problem **6.3** step by step. **Given:** - \(\tan x = m + \frac{1}{m}\) - \(90^{\circ} \leq x \leq 270^{\circ}\) (i.e., \(x\) is in the **second** or **third** quadrant) - \(m^2 + \frac{1}{m^2} = 1\) **Objective:** Find the value of \(x\). --- ### Step 1: Express \(m + \frac{1}{m}\) in Terms of \(\tan x\) We know that: \[ m + \frac{1}{m} = \tan x \] Let's square both sides to relate it to the given equation: \[ \left(m + \frac{1}{m}\right)^2 = (\tan x)^2 \] \[ m^2 + 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^2} = (\tan x)^2 \] \[ m^2 + 2 + \frac{1}{m^2} = (\tan x)^2 \] ### Step 2: Use the Given Equation to Simplify We are given: \[ m^2 + \frac{1}{m^2} = 1 \] Substitute this into the previous equation: \[ 1 + 2 = (\tan x)^2 \] \[ (\tan x)^2 = 3 \] \[ \tan x = \pm \sqrt{3} \] ### Step 3: Determine the Possible Values of \(x\) in the Given Interval Given \(90^{\circ} \leq x \leq 270^{\circ}\), \(x\) lies in either the **second** or **third** quadrant. - **Second Quadrant (\(90^{\circ} < x < 180^{\circ}\)):** - \(\tan x\) is negative. - \(\tan x = -\sqrt{3}\) - **Solution:** \(x = 120^{\circ}\) - **Third Quadrant (\(180^{\circ} < x < 270^{\circ}\)):** - \(\tan x\) is positive. - \(\tan x = \sqrt{3}\) - **Solution:** \(x = 240^{\circ}\) ### Final Answer The possible values of \(x\) within the specified interval are: \[ x = 120^{\circ} \quad \text{or} \quad x = 240^{\circ} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expression \( 6.1 \): First, we find the values of the trigonometric functions: - \( \sin 210^{\circ} = -\frac{1}{2} \) - \( \cos 300^{\circ} = \frac{1}{2} \) - \( \tan 240^{\circ} = \frac{1}{\sqrt{3}} \) - \( \cos 120^{\circ} = -\frac{1}{2} \) - \( \tan 150^{\circ} = -\frac{1}{\sqrt{3}} \) - \( \sin 330^{\circ} = -\frac{1}{2} \) Now substituting these values into the expression: \[ 6.1 = 6.1 \cdot \frac{-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{3}}}{-\frac{1}{2} \cdot -\frac{1}{\sqrt{3}} \cdot -\frac{1}{2}} \] The numerator simplifies to \( -\frac{1}{8\sqrt{3}} \) and the denominator simplifies to \( -\frac{1}{8\sqrt{3}} \): \[ 6.1 = 6.1 \cdot 1 = 6.1 \] Now to simplify \( 6.2 \): Using the identities: - \( \sin(-\theta) = -\sin(\theta) \) - \( \cos(360 - \theta) = \cos(\theta) \) - \( \cos(90 - \theta) = \sin(\theta) \) and \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \) We replace these in \( 6.2 \): \[ 6.2 = [-\sin\theta + \cos\theta][\sin\theta + \frac{\sin\theta \cdot \cos\theta}{\sin\theta}] \] \[ = [-\sin\theta + \cos\theta][\sin\theta + \cos\theta] \] Applying the formula for the product of binomials: \[ = (-\sin^2\theta + \cos^2\theta) + (-\sin\theta \cos\theta + \sin\theta \cos\theta) = \cos^2\theta - \sin^2\theta \] So, we can conclude the simplified expressions as \( 6.1 = 6.1 \) and \( 6.2 = \cos^2\theta - \sin^2\theta \). For \( 6.3 \): Given \( m^2 + \frac{1}{m^2} = 1 \), we let \( t = m + \frac{1}{m} \): \[ t^2 = m^2 + 2 + \frac{1}{m^2} = 1 + 2 \implies t^2 = 3 \implies t = \sqrt{3} \text{ or } -\sqrt{3} \] Now, since \( \tan x = m + \frac{1}{m} \), 1. \( \tan x = \sqrt{3} \) corresponds to \( x = 60^{\circ} + k \cdot 180^{\circ} \) 2. \( \tan x = -\sqrt{3} \) corresponds to \( x = 120^{\circ} + k \cdot 180^{\circ} \) In the interval \( 90^{\circ} \leq x \leq 270^{\circ} \): - The solutions for \( x = \sqrt{3} \) fall into the quadrant of \( 60^{\circ} + 180^{\circ} \), giving us \( 240^{\circ} \). - The solution for \( -\sqrt{3} \) is \( 120^{\circ} \). Finally, the valid \( x \) is \( 120^{\circ} \) and \( 240^{\circ} \), but since it is specified \( 90^{\circ} \leq x \leq 270^{\circ} \), we confirm that \( x = 120^{\circ} \) and \( x = 240^{\circ} \).

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy