Answer
\[
\begin{align*}
\frac{14}{9} - \frac{2}{9} &= \frac{4}{3} \\
\frac{2}{a-1} - \frac{5}{a-1} &= -\frac{3}{a-1} \\
\frac{x+4}{7} - \frac{x-5}{7} &= \frac{9}{7} \\
\frac{5}{2n} - \frac{2}{n} &= \frac{1}{2n} \\
\frac{3x}{2x+1} - \frac{x}{2x+1} &= \frac{2x}{2x+1} \\
\frac{x+2}{x-4} - \frac{3}{x+1} &= \frac{x^2 + 14}{(x-4)(x+1)} \\
\frac{x}{x-3} - \frac{6x}{x^2-9} &= \frac{x}{x+3} \quad (x \neq 3)
\end{align*}
\]
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{14}{9}-\frac{2}{9}\)
- step1: Transform the expression:
\(\frac{14-2}{9}\)
- step2: Subtract the numbers:
\(\frac{12}{9}\)
- step3: Reduce the fraction:
\(\frac{4}{3}\)
Calculate or simplify the expression \( 5/(2*n) - 2/n \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5}{2n}-\frac{2}{n}\)
- step1: Reduce fractions to a common denominator:
\(\frac{5}{2n}-\frac{2\times 2}{n\times 2}\)
- step2: Reorder the terms:
\(\frac{5}{2n}-\frac{2\times 2}{2n}\)
- step3: Transform the expression:
\(\frac{5-2\times 2}{2n}\)
- step4: Multiply the numbers:
\(\frac{5-4}{2n}\)
- step5: Subtract the numbers:
\(\frac{1}{2n}\)
Calculate or simplify the expression \( 2/(a-1) - 5/(a-1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{\left(a-1\right)}-\frac{5}{\left(a-1\right)}\)
- step1: Remove the parentheses:
\(\frac{2}{a-1}-\frac{5}{a-1}\)
- step2: Transform the expression:
\(\frac{2-5}{a-1}\)
- step3: Subtract the numbers:
\(\frac{-3}{a-1}\)
- step4: Rewrite the fraction:
\(-\frac{3}{a-1}\)
Calculate or simplify the expression \( (x+4)/7 - (x-5)/7 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+4\right)}{7}-\frac{\left(x-5\right)}{7}\)
- step1: Remove the parentheses:
\(\frac{x+4}{7}-\frac{x-5}{7}\)
- step2: Transform the expression:
\(\frac{x+4-\left(x-5\right)}{7}\)
- step3: Calculate:
\(\frac{9}{7}\)
Calculate or simplify the expression \( (3*x)/(2*x+1) - x/(2*x+1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3x}{\left(2x+1\right)}-\frac{x}{\left(2x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{3x}{2x+1}-\frac{x}{2x+1}\)
- step2: Transform the expression:
\(\frac{3x-x}{2x+1}\)
- step3: Subtract the terms:
\(\frac{2x}{2x+1}\)
Calculate or simplify the expression \( x/(x-3) - 6*x/(x^2-9) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(x-3\right)}-\frac{6x}{\left(x^{2}-9\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{x-3}-\frac{6x}{x^{2}-9}\)
- step2: Factor the expression:
\(\frac{x}{x-3}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\)
- step3: Reduce fractions to a common denominator:
\(\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\)
- step4: Rewrite the expression:
\(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\)
- step5: Transform the expression:
\(\frac{x\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)
- step6: Multiply the terms:
\(\frac{x^{2}+3x-6x}{\left(x+3\right)\left(x-3\right)}\)
- step7: Subtract the terms:
\(\frac{x^{2}-3x}{\left(x+3\right)\left(x-3\right)}\)
- step8: Factor the expression:
\(\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
- step9: Reduce the fraction:
\(\frac{x}{x+3}\)
Calculate or simplify the expression \( (x+2)/(x-4) - 3/(x+1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+2\right)}{\left(x-4\right)}-\frac{3}{\left(x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{x+2}{x-4}-\frac{3}{x+1}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x+2\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}-\frac{3\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}\)
- step3: Rewrite the expression:
\(\frac{\left(x+2\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}-\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\)
- step4: Transform the expression:
\(\frac{\left(x+2\right)\left(x+1\right)-3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\)
- step5: Multiply the terms:
\(\frac{x^{2}+3x+2-3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\)
- step6: Multiply the terms:
\(\frac{x^{2}+3x+2-\left(3x-12\right)}{\left(x-4\right)\left(x+1\right)}\)
- step7: Calculate:
\(\frac{x^{2}+14}{\left(x-4\right)\left(x+1\right)}\)
- step8: Multiply the terms:
\(\frac{x^{2}+14}{x^{2}-3x-4}\)
Let's go through each subtraction step by step and simplify the results where possible.
1. **First Expression:**
\[
\frac{14}{9} - \frac{2}{9} = \frac{14 - 2}{9} = \frac{12}{9} = \frac{4}{3}
\]
2. **Second Expression:**
\[
\frac{2}{a-1} - \frac{5}{a-1} = \frac{2 - 5}{a-1} = \frac{-3}{a-1}
\]
3. **Third Expression:**
\[
\frac{x+4}{7} - \frac{x-5}{7} = \frac{(x+4) - (x-5)}{7} = \frac{x + 4 - x + 5}{7} = \frac{9}{7}
\]
4. **Fourth Expression:**
\[
\frac{5}{2n} - \frac{2}{n} = \frac{5}{2n} - \frac{4}{2n} = \frac{5 - 4}{2n} = \frac{1}{2n}
\]
5. **Fifth Expression:**
\[
\frac{3x}{2x+1} - \frac{x}{2x+1} = \frac{3x - x}{2x+1} = \frac{2x}{2x+1}
\]
6. **Sixth Expression:**
\[
\frac{x+2}{x-4} - \frac{3}{x+1} = \frac{(x+2)(x+1) - 3(x-4)}{(x-4)(x+1)}
\]
Expanding the numerator:
\[
(x^2 + x + 2x + 2) - (3x - 12) = x^2 + 3x + 2 - 3x + 12 = x^2 + 14
\]
Thus, we have:
\[
\frac{x^2 + 14}{(x-4)(x+1)}
\]
7. **Seventh Expression:**
\[
\frac{x}{x-3} - \frac{6x}{x^2-9} = \frac{x}{x-3} - \frac{6x}{(x-3)(x+3)} = \frac{x(x+3) - 6x}{(x-3)(x+3)} = \frac{x^2 + 3x - 6x}{(x-3)(x+3)} = \frac{x^2 - 3x}{(x-3)(x+3)}
\]
This can be simplified to:
\[
\frac{x(x-3)}{(x-3)(x+3)} = \frac{x}{x+3} \quad (x \neq 3)
\]
### Summary of Results:
1. \( \frac{14}{9} - \frac{2}{9} = \frac{4}{3} \)
2. \( \frac{2}{a-1} - \frac{5}{a-1} = -\frac{3}{a-1} \)
3. \( \frac{x+4}{7} - \frac{x-5}{7} = \frac{9}{7} \)
4. \( \frac{5}{2n} - \frac{2}{n} = \frac{1}{2n} \)
5. \( \frac{3x}{2x+1} - \frac{x}{2x+1} = \frac{2x}{2x+1} \)
6. \( \frac{x+2}{x-4} - \frac{3}{x+1} = \frac{x^2 + 14}{(x-4)(x+1)} \)
7. \( \frac{x}{x-3} - \frac{6x}{x^2-9} = \frac{x}{x+3} \) (for \( x \neq 3 \))
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution