Question
upstudy study bank question image url

Subtract. Simplify your answer if you can. \( \begin{array}{l}\frac{14}{9}-\frac{2}{9}=\frac{4}{3} \quad \frac{2}{a-1}-\frac{5}{a-1}=\frac{3}{A-1} \quad \frac{x+4}{7}-\frac{x-5}{7}=\frac{9}{7} \\ \frac{5}{2 n}-\frac{2}{n}=\frac{1}{2 N} \\ \frac{3 x}{2 x+1}-\frac{x}{2 x+1}=\frac{3}{2 x}-\frac{4}{6 x^{2}}= \\ \frac{x+2}{x-4}-\frac{3}{x+1}= \\ 36\end{array} \quad \frac{x}{x-3}-\frac{6 x}{x^{2}-9}= \)

Ask by Phillips Campbell. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{align*} \frac{14}{9} - \frac{2}{9} &= \frac{4}{3} \\ \frac{2}{a-1} - \frac{5}{a-1} &= -\frac{3}{a-1} \\ \frac{x+4}{7} - \frac{x-5}{7} &= \frac{9}{7} \\ \frac{5}{2n} - \frac{2}{n} &= \frac{1}{2n} \\ \frac{3x}{2x+1} - \frac{x}{2x+1} &= \frac{2x}{2x+1} \\ \frac{x+2}{x-4} - \frac{3}{x+1} &= \frac{x^2 + 14}{(x-4)(x+1)} \\ \frac{x}{x-3} - \frac{6x}{x^2-9} &= \frac{x}{x+3} \quad (x \neq 3) \end{align*} \]

Solution

Calculate the value by following steps: - step0: Calculate: \(\frac{14}{9}-\frac{2}{9}\) - step1: Transform the expression: \(\frac{14-2}{9}\) - step2: Subtract the numbers: \(\frac{12}{9}\) - step3: Reduce the fraction: \(\frac{4}{3}\) Calculate or simplify the expression \( 5/(2*n) - 2/n \). Simplify the expression by following steps: - step0: Solution: \(\frac{5}{2n}-\frac{2}{n}\) - step1: Reduce fractions to a common denominator: \(\frac{5}{2n}-\frac{2\times 2}{n\times 2}\) - step2: Reorder the terms: \(\frac{5}{2n}-\frac{2\times 2}{2n}\) - step3: Transform the expression: \(\frac{5-2\times 2}{2n}\) - step4: Multiply the numbers: \(\frac{5-4}{2n}\) - step5: Subtract the numbers: \(\frac{1}{2n}\) Calculate or simplify the expression \( 2/(a-1) - 5/(a-1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{\left(a-1\right)}-\frac{5}{\left(a-1\right)}\) - step1: Remove the parentheses: \(\frac{2}{a-1}-\frac{5}{a-1}\) - step2: Transform the expression: \(\frac{2-5}{a-1}\) - step3: Subtract the numbers: \(\frac{-3}{a-1}\) - step4: Rewrite the fraction: \(-\frac{3}{a-1}\) Calculate or simplify the expression \( (x+4)/7 - (x-5)/7 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+4\right)}{7}-\frac{\left(x-5\right)}{7}\) - step1: Remove the parentheses: \(\frac{x+4}{7}-\frac{x-5}{7}\) - step2: Transform the expression: \(\frac{x+4-\left(x-5\right)}{7}\) - step3: Calculate: \(\frac{9}{7}\) Calculate or simplify the expression \( (3*x)/(2*x+1) - x/(2*x+1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{3x}{\left(2x+1\right)}-\frac{x}{\left(2x+1\right)}\) - step1: Remove the parentheses: \(\frac{3x}{2x+1}-\frac{x}{2x+1}\) - step2: Transform the expression: \(\frac{3x-x}{2x+1}\) - step3: Subtract the terms: \(\frac{2x}{2x+1}\) Calculate or simplify the expression \( x/(x-3) - 6*x/(x^2-9) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x-3\right)}-\frac{6x}{\left(x^{2}-9\right)}\) - step1: Remove the parentheses: \(\frac{x}{x-3}-\frac{6x}{x^{2}-9}\) - step2: Factor the expression: \(\frac{x}{x-3}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\) - step3: Reduce fractions to a common denominator: \(\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\) - step4: Rewrite the expression: \(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{6x}{\left(x+3\right)\left(x-3\right)}\) - step5: Transform the expression: \(\frac{x\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\) - step6: Multiply the terms: \(\frac{x^{2}+3x-6x}{\left(x+3\right)\left(x-3\right)}\) - step7: Subtract the terms: \(\frac{x^{2}-3x}{\left(x+3\right)\left(x-3\right)}\) - step8: Factor the expression: \(\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\) - step9: Reduce the fraction: \(\frac{x}{x+3}\) Calculate or simplify the expression \( (x+2)/(x-4) - 3/(x+1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+2\right)}{\left(x-4\right)}-\frac{3}{\left(x+1\right)}\) - step1: Remove the parentheses: \(\frac{x+2}{x-4}-\frac{3}{x+1}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x+2\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}-\frac{3\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}\) - step3: Rewrite the expression: \(\frac{\left(x+2\right)\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}-\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\) - step4: Transform the expression: \(\frac{\left(x+2\right)\left(x+1\right)-3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\) - step5: Multiply the terms: \(\frac{x^{2}+3x+2-3\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}\) - step6: Multiply the terms: \(\frac{x^{2}+3x+2-\left(3x-12\right)}{\left(x-4\right)\left(x+1\right)}\) - step7: Calculate: \(\frac{x^{2}+14}{\left(x-4\right)\left(x+1\right)}\) - step8: Multiply the terms: \(\frac{x^{2}+14}{x^{2}-3x-4}\) Let's go through each subtraction step by step and simplify the results where possible. 1. **First Expression:** \[ \frac{14}{9} - \frac{2}{9} = \frac{14 - 2}{9} = \frac{12}{9} = \frac{4}{3} \] 2. **Second Expression:** \[ \frac{2}{a-1} - \frac{5}{a-1} = \frac{2 - 5}{a-1} = \frac{-3}{a-1} \] 3. **Third Expression:** \[ \frac{x+4}{7} - \frac{x-5}{7} = \frac{(x+4) - (x-5)}{7} = \frac{x + 4 - x + 5}{7} = \frac{9}{7} \] 4. **Fourth Expression:** \[ \frac{5}{2n} - \frac{2}{n} = \frac{5}{2n} - \frac{4}{2n} = \frac{5 - 4}{2n} = \frac{1}{2n} \] 5. **Fifth Expression:** \[ \frac{3x}{2x+1} - \frac{x}{2x+1} = \frac{3x - x}{2x+1} = \frac{2x}{2x+1} \] 6. **Sixth Expression:** \[ \frac{x+2}{x-4} - \frac{3}{x+1} = \frac{(x+2)(x+1) - 3(x-4)}{(x-4)(x+1)} \] Expanding the numerator: \[ (x^2 + x + 2x + 2) - (3x - 12) = x^2 + 3x + 2 - 3x + 12 = x^2 + 14 \] Thus, we have: \[ \frac{x^2 + 14}{(x-4)(x+1)} \] 7. **Seventh Expression:** \[ \frac{x}{x-3} - \frac{6x}{x^2-9} = \frac{x}{x-3} - \frac{6x}{(x-3)(x+3)} = \frac{x(x+3) - 6x}{(x-3)(x+3)} = \frac{x^2 + 3x - 6x}{(x-3)(x+3)} = \frac{x^2 - 3x}{(x-3)(x+3)} \] This can be simplified to: \[ \frac{x(x-3)}{(x-3)(x+3)} = \frac{x}{x+3} \quad (x \neq 3) \] ### Summary of Results: 1. \( \frac{14}{9} - \frac{2}{9} = \frac{4}{3} \) 2. \( \frac{2}{a-1} - \frac{5}{a-1} = -\frac{3}{a-1} \) 3. \( \frac{x+4}{7} - \frac{x-5}{7} = \frac{9}{7} \) 4. \( \frac{5}{2n} - \frac{2}{n} = \frac{1}{2n} \) 5. \( \frac{3x}{2x+1} - \frac{x}{2x+1} = \frac{2x}{2x+1} \) 6. \( \frac{x+2}{x-4} - \frac{3}{x+1} = \frac{x^2 + 14}{(x-4)(x+1)} \) 7. \( \frac{x}{x-3} - \frac{6x}{x^2-9} = \frac{x}{x+3} \) (for \( x \neq 3 \))

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To tackle the subtraction of fractions like the examples given, remember that fractions can only be subtracted when they share a common denominator. Look closely at each expression; most of them have the same denominator, making it easy to combine the numerators. For instance, \(\frac{14}{9} - \frac{2}{9}\) simply gives you \(\frac{12}{9}\) which can be simplified to \(\frac{4}{3}\). When working with variables, like \(\frac{2}{a-1} - \frac{5}{a-1}\), the denominators are identical, letting you directly subtract the numerators, resulting in \(\frac{-3}{a-1}\). Just remember, once you’ve performed these operations, always check if you can factor or simplify your answers further. Happy calculating! If you run into fractions with different denominators, like in \(\frac{x}{x-3} - \frac{6x}{x^2-9}\), that involves factoring to find a common denominator. The denominator \(x^2-9\) can be factored into \((x-3)(x+3)\), so you’d rewrite each fraction accordingly and combine the numerators just like before. Remember, simplifying your final expression is key to maintaining clarity!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy