Answer
Here are the solutions to each part:
a) □ = 350
b) □ = 8
c) □ = 11,000 and 3,000
d) □ = 9,200 and 200
e) □ = 30
(1) □ = 70 and 60
g) □ = 3,500 and 5,000
b) □ = 1,500 and 30
i) □ = 2,500 and 100
D) □ = 5,000 and 1,000
Solution
Sure, let's solve each of the provided equations step by step to find the value of the square ( □ ).
---
### a)
**Given:**
\[
500 - 150 = 350
\]
\[
\square + 150 = 500
\]
**Solution:**
\[
\square + 150 = 500 \\
\square = 500 - 150 \\
\square = 350
\]
**Answer:** □ = **350**
---
### b)
**Given:**
\[
12 \times \square = 96
\]
\[
96 \div 8 = \square
\]
**Solution:**
1. From \( 12 \times \square = 96 \):
\[
\square = \frac{96}{12} = 8
\]
2. From \( 96 \div 8 = \square \):
\[
\square = 12
\]
**Note:** There seems to be a confusion in the second equation's setup. Assuming it's part of the same problem, the primary solution from the first equation is more consistent.
**Answer:** □ = **8**
---
### c)
**Given:**
\[
3000 + 8000 = \square
\]
\[
11000 - \square = 8000
\]
**Solution:**
1. From \( 3000 + 8000 = \square \):
\[
\square = 11000
\]
2. From \( 11000 - \square = 8000 \):
\[
\square = 11000 - 8000 = 3000
\]
**Answer:**
- First □ = **11,000**
- Second □ = **3,000**
---
### d)
**Given:**
\[
5000 + 200 + 4000 = \square
\]
\[
9200 - \square - 5000 = 4000
\]
**Solution:**
1. From \( 5000 + 200 + 4000 = \square \):
\[
\square = 5000 + 200 + 4000 = 9200
\]
2. From \( 9200 - \square - 5000 = 4000 \):
\[
9200 - 5000 - 4000 = \square \\
\square = 200
\]
**Answer:**
- First □ = **9,200**
- Second □ = **200**
---
### e)
**Given:**
\[
90 \times \square = 2700
\]
\[
2700 \div 30 = \square
\]
**Solution:**
1. From \( 90 \times \square = 2700 \):
\[
\square = \frac{2700}{90} = 30
\]
2. From \( 2700 \div 30 = \square \):
\[
\square = 90
\]
**Note:** Similar to part b, there's a discrepancy. The primary solution from the first equation is consistent.
**Answer:** □ = **30**
---
### (1)
**Given:**
\[
4200 \div 60 = \square
\]
\[
\square \times 70 = 4200
\]
**Solution:**
1. From \( 4200 \div 60 = \square \):
\[
\square = 70
\]
2. From \( \square \times 70 = 4200 \):
\[
\square = \frac{4200}{70} = 60
\]
**Answer:**
- First □ = **70**
- Second □ = **60**
---
### g)
**Given:**
\[
2000 + 5000 + \square = 10500
\]
\[
10500 - 3500 - \square = 2000
\]
**Solution:**
1. From \( 2000 + 5000 + \square = 10500 \):
\[
7000 + \square = 10500 \\
\square = 10500 - 7000 = 3500
\]
2. From \( 10500 - 3500 - \square = 2000 \):
\[
7000 - \square = 2000 \\
\square = 7000 - 2000 = 5000
\]
**Answer:**
- First □ = **3,500**
- Second □ = **5,000**
---
### b) *(Second occurrence)*
**Given:**
\[
30 \times 50 = \square
\]
\[
1500 \div 50 = \square
\]
**Solution:**
1. From \( 30 \times 50 = \square \):
\[
\square = 1500
\]
2. From \( 1500 \div 50 = \square \):
\[
\square = 30
\]
**Answer:**
- First □ = **1,500**
- Second □ = **30**
---
### i)
**Given:**
\[
10000 - \square - 100 = 7400
\]
\[
7400 + \square + 2500 = 10000
\]
**Solution:**
1. From \( 10000 - \square - 100 = 7400 \):
\[
9900 - \square = 7400 \\
\square = 9900 - 7400 = 2500
\]
2. From \( 7400 + \square + 2500 = 10000 \):
\[
9900 + \square = 10000 \\
\square = 10000 - 9900 = 100
\]
**Answer:**
- First □ = **2,500**
- Second □ = **100**
---
### D)
**Given:**
\[
\square \div 5 = 1000
\]
\[
\square \times 5 = 5000
\]
**Solution:**
1. From \( \square \div 5 = 1000 \):
\[
\square = 1000 \times 5 = 5000
\]
2. From \( \square \times 5 = 5000 \):
\[
\square = \frac{5000}{5} = 1000
\]
**Answer:**
- First □ = **5,000**
- Second □ = **1,000**
---
**Summary of Solutions:**
| Part | Value of □ |
|------|------------|
| a) | 350 |
| b) | 8 |
| c) | 11,000 and 3,000 |
| d) | 9,200 and 200 |
| e) | 30 |
| (1) | 70 and 60 |
| g) | 3,500 and 5,000 |
| b) | 1,500 and 30 |
| i) | 2,500 and 100 |
| D) | 5,000 and 1,000 |
If you have any specific part you'd like to delve deeper into or if there's a particular question about these solutions, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution