Question
upstudy study bank question image url

If the first 5 terms of a geometric sequence are \( \left\{12,6,3, \frac{3}{2}, \frac{3}{4}\right\} \) then the formula for the \( n^{\text {th }} \) term in the sequence is a.) \( a_{n}=12 \cdot 2^{n-1} \) b.) \( a_{n}=\left(\frac{1}{2}\right) \cdot 12^{n-1} \) c.) \( a_{n}=2 \cdot 12^{n-1} \) d.) \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \) (

Ask by Olson Chan. in the United States
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The formula for the \( n^{\text{th}} \) term is \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \).

Solution

To determine the formula for the \( n^{\text{th}} \) term of the given geometric sequence \( \left\{12, 6, 3, \frac{3}{2}, \frac{3}{4}\right\} \), follow these steps: 1. **Identify the First Term (\( a_1 \)) and the Common Ratio (\( r \)):** - The first term \( a_1 \) is **12**. - To find the common ratio \( r \), divide the second term by the first term: \[ r = \frac{6}{12} = \frac{1}{2} \] - Verify the ratio with subsequent terms: \[ \frac{3}{6} = \frac{1}{2}, \quad \frac{\frac{3}{2}}{3} = \frac{1}{2}, \quad \frac{\frac{3}{4}}{\frac{3}{2}} = \frac{1}{2} \] The common ratio \( r \) is consistently \( \frac{1}{2} \). 2. **Use the Formula for the \( n^{\text{th}} \) Term of a Geometric Sequence:** The general formula for the \( n^{\text{th}} \) term of a geometric sequence is: \[ a_n = a_1 \cdot r^{n-1} \] Substituting the known values: \[ a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \] 3. **Compare with the Given Options:** - **Option d.)** \( a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \) matches our derived formula. **Answer:** d.) \( a_{n}=12 \cdot\left(\frac{1}{2}\right)^{n-1} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

In a geometric sequence, each term is obtained by multiplying the previous term by a constant ratio. In this case, the first term is 12, and the common ratio is \(\frac{1}{2}\) (as seen from moving from 12 to 6, and so forth). Therefore, we can formulate the \( n^{\text{th}} \) term as \( a_n = 12 \cdot \left(\frac{1}{2}\right)^{n-1} \). As for real-world applications, geometric sequences can be found in various scenarios, such as calculating population growth under ideal conditions, determining the depreciation of an asset over time, or even modeling the spread of a virus in its initial stages. Recognizing these patterns helps us understand not just theoretical math, but also real-life trends and changes!

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Algebra Romania Jan 30, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy