Question
upstudy study bank question image url

Given the matrices: \[ A=\left(\begin{array}{ccc} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{array}\right) ; \quad B=\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{array}\right) \] Calculate: (1) \( A \times B ; \) (2) \( B \times A \) and show shat \( A B \neq B A \)

Ask by Fleming Gibson. in India
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( AB \) is not equal to \( BA \), so \( A \times B \neq B \times A \).

Solution

To determine whether \( A \times B = B \times A \), let's compute both products step by step. Given the matrices: \[ A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] ### 1. Calculating \( A \times B \) The product \( AB \) is found by multiplying rows of \( A \) with columns of \( B \): \[ AB_{i,j} = \sum_{k=1}^{3} A_{i,k} \times B_{k,j} \] **First Row of \( A \) and All Columns of \( B \):** \[ \begin{aligned} AB_{1,1} &= (2 \times 1) + (0 \times 1) + (1 \times 1) = 2 + 0 + 1 = 3 \\ AB_{1,2} &= (2 \times 0) + (0 \times 2) + (1 \times 1) = 0 + 0 + 1 = 1 \\ AB_{1,3} &= (2 \times 1) + (0 \times 1) + (1 \times 0) = 2 + 0 + 0 = 2 \\ \end{aligned} \] **Second Row of \( A \) and All Columns of \( B \):** \[ \begin{aligned} AB_{2,1} &= (3 \times 1) + (0 \times 1) + (0 \times 1) = 3 + 0 + 0 = 3 \\ AB_{2,2} &= (3 \times 0) + (0 \times 2) + (0 \times 1) = 0 + 0 + 0 = 0 \\ AB_{2,3} &= (3 \times 1) + (0 \times 1) + (0 \times 0) = 3 + 0 + 0 = 3 \\ \end{aligned} \] **Third Row of \( A \) and All Columns of \( B \):** \[ \begin{aligned} AB_{3,1} &= (5 \times 1) + (1 \times 1) + (1 \times 1) = 5 + 1 + 1 = 7 \\ AB_{3,2} &= (5 \times 0) + (1 \times 2) + (1 \times 1) = 0 + 2 + 1 = 3 \\ AB_{3,3} &= (5 \times 1) + (1 \times 1) + (1 \times 0) = 5 + 1 + 0 = 6 \\ \end{aligned} \] **Resulting Matrix \( AB \):** \[ AB = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix} \] ### 2. Calculating \( B \times A \) Similarly, the product \( BA \) is found by multiplying rows of \( B \) with columns of \( A \): \[ BA_{i,j} = \sum_{k=1}^{3} B_{i,k} \times A_{k,j} \] **First Row of \( B \) and All Columns of \( A \):** \[ \begin{aligned} BA_{1,1} &= (1 \times 2) + (0 \times 3) + (1 \times 5) = 2 + 0 + 5 = 7 \\ BA_{1,2} &= (1 \times 0) + (0 \times 0) + (1 \times 1) = 0 + 0 + 1 = 1 \\ BA_{1,3} &= (1 \times 1) + (0 \times 0) + (1 \times 1) = 1 + 0 + 1 = 2 \\ \end{aligned} \] **Second Row of \( B \) and All Columns of \( A \):** \[ \begin{aligned} BA_{2,1} &= (1 \times 2) + (2 \times 3) + (1 \times 5) = 2 + 6 + 5 = 13 \\ BA_{2,2} &= (1 \times 0) + (2 \times 0) + (1 \times 1) = 0 + 0 + 1 = 1 \\ BA_{2,3} &= (1 \times 1) + (2 \times 0) + (1 \times 1) = 1 + 0 + 1 = 2 \\ \end{aligned} \] **Third Row of \( B \) and All Columns of \( A \):** \[ \begin{aligned} BA_{3,1} &= (1 \times 2) + (1 \times 3) + (0 \times 5) = 2 + 3 + 0 = 5 \\ BA_{3,2} &= (1 \times 0) + (1 \times 0) + (0 \times 1) = 0 + 0 + 0 = 0 \\ BA_{3,3} &= (1 \times 1) + (1 \times 0) + (0 \times 1) = 1 + 0 + 0 = 1 \\ \end{aligned} \] **Resulting Matrix \( BA \):** \[ BA = \begin{pmatrix} 7 & 1 & 2 \\ 13 & 1 & 2 \\ 5 & 0 & 1 \end{pmatrix} \] ### 3. Comparing \( AB \) and \( BA \) \[ AB = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix}, \quad BA = \begin{pmatrix} 7 & 1 & 2 \\ 13 & 1 & 2 \\ 5 & 0 & 1 \end{pmatrix} \] Clearly, \( AB \) is **not equal** to \( BA \). For instance: - \( AB_{1,1} = 3 \neq 7 = BA_{1,1} \) - \( AB_{2,1} = 3 \neq 13 = BA_{2,1} \) - \( AB_{3,1} = 7 \neq 5 = BA_{3,1} \) This demonstrates that matrix multiplication is **not commutative**, i.e., \( A \times B \neq B \times A \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let’s start by calculating the matrix multiplication \( A \times B \). First, we compute the product \( A \times B \): \[ A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] To find \( A \times B \): - The element in the first row and first column: \( 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 = 2 + 0 + 1 = 3 \) - The element in the first row and second column: \( 2 \cdot 0 + 0 \cdot 2 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the first row and third column: \( 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 2 + 0 + 0 = 2 \) - The element in the second row and first column: \( 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = 3 + 0 + 0 = 3 \) - The element in the second row and second column: \( 3 \cdot 0 + 0 \cdot 2 + 0 \cdot 1 = 0 + 0 + 0 = 0 \) - The element in the second row and third column: \( 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 = 3 + 0 + 0 = 3 \) - The element in the third row and first column: \( 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 5 + 1 + 1 = 7 \) - The element in the third row and second column: \( 5 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 = 0 + 2 + 1 = 3 \) - The element in the third row and third column: \( 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = 5 + 1 + 0 = 6 \) Combining these results, we find: \[ A \times B = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix} \] Now, let's compute \( B \times A \): To find \( B \times A \): - The element in the first row and first column: \( 1 \cdot 2 + 0 \cdot 3 + 1 \cdot 5 = 2 + 0 + 5 = 7 \) - The element in the first row and second column: \( 1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the first row and third column: \( 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1 = 1 + 0 + 1 = 2 \) - The element in the second row and first column: \( 1 \cdot 2 + 2 \cdot 3 + 1 \cdot 5 = 2 + 6 + 5 = 13 \) - The element in the second row and second column: \( 1 \cdot 0 + 2 \cdot 0 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - The element in the second row and third column: \( 1 \cdot 1 + 2 \cdot 0 + 1 \cdot 1 = 1 + 0 + 1 = 2 \) - The element in the third row and first column: \( 1 \cdot 2 + 1 \cdot 3 + 0 \cdot 5 = 2 + 3 + 0 = 5 \) - The element in the third row and second column: \( 1 \cdot

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy