Find the interval of convergence for the given power series. \( \sum_{n=1}^{\infty} \frac{(x-7)^{n}}{n(-4)^{n}} \) The series is convergent on the interval:
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the interval of convergence, we can use the ratio test. For the given series, we need to analyze the terms \( a_n = \frac{(x-7)^{n}}{n(-4)^{n}} \). Applying the ratio test: \[ \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(x-7)^{n+1}}{(n+1)(-4)^{n+1}} \cdot \frac{n(-4)^{n}}{(x-7)^{n}} \right| = \left| \frac{(x-7)}{-4} \cdot \frac{n}{n+1} \right| \] As \( n \to \infty \), \(\frac{n}{n+1} \to 1\). Therefore: \[ \left| \frac{a_{n+1}}{a_n} \right| \approx \left| \frac{x-7}{-4} \right| \] For convergence, we require: \[ \left| \frac{x-7}{-4} \right| < 1 \implies -1 < \frac{x-7}{-4} < 1 \] Multiplying through by \(-4\) (and flipping the inequalities): \[ 4 > x-7 > -4 \implies 7 + 4 > x > 7 - 4 \] This simplifies to: \[ 11 > x > 3 \implies (3, 11) \] Next, we should check the endpoints \( x = 3 \) and \( x = 11 \): 1. **At \( x = 3 \)**: \[ \sum_{n=1}^{\infty} \frac{(3-7)^{n}}{n(-4)^{n}} = \sum_{n=1}^{\infty} \frac{(-4)^{n}}{n(-4)^{n}} = \sum_{n=1}^{\infty} \frac{1}{n} \] This series diverges (harmonic series). 2. **At \( x = 11 \)**: \[ \sum_{n=1}^{\infty} \frac{(11-7)^{n}}{n(-4)^{n}} = \sum_{n=1}^{\infty} \frac{4^{n}}{n(-4)^{n}} = \sum_{n=1}^{\infty} \frac{1}{n} \] This series also diverges. Thus the interval of convergence is \((3, 11)\).