Question
upstudy study bank question image url

\( \int \frac { x - 1 } { ( x + 1 ) ^ { 3 } } d x = \frac { A } { x + 1 } + \frac { B } { ( x + 1 ) ^ { 2 } } + \frac { C } { ( x + 1 ) ^ { 3 } } \)

Ask by Reid Hodgson. in Colombia
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Los coeficientes son \( A = -1 \), \( B = 1 \), y \( C = 0 \).

Solution

Para resolver la integral: \[ \int \frac{x - 1}{(x + 1)^3} \, dx \] Podemos emplear una **sustitución** para simplificar la expresión. 1. **Sustitución**: Sea \( u = x + 1 \). Entonces, la derivada de \( u \) con respecto a \( x \) es: \[ du = dx \quad \text{y} \quad x = u - 1 \] 2. **Reescribir la integral en términos de \( u \)**: Sustituyendo en la integral original: \[ \int \frac{(u - 1) - 1}{u^3} \, du = \int \frac{u - 2}{u^3} \, du = \int \left( \frac{1}{u^2} - \frac{2}{u^3} \right) \, du \] 3. **Integrar término a término**: \[ \int \frac{1}{u^2} \, du - 2 \int \frac{1}{u^3} \, du = -\frac{1}{u} + \frac{1}{u^2} + C \] donde \( C \) es la constante de integración. 4. **Volver a la variable original \( x \)**: Reemplazando \( u = x + 1 \): \[ -\frac{1}{x + 1} + \frac{1}{(x + 1)^2} + C \] Comparando con la expresión dada: \[ \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3} \] Podemos identificar los coeficientes: - \( A = -1 \) - \( B = 1 \) - \( C = 0 \) **Respuesta Final**: \[ A = -1, \quad B = 1, \quad C = 0 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the integral \( \int \frac { x - 1 } { ( x + 1 ) ^ { 3 } } d x \) and determine the coefficients \( A, B, \) and \( C \) in the expression \( \frac { A } { x + 1 } + \frac { B } { ( x + 1 ) ^ { 2 } } + \frac { C } { ( x + 1 ) ^ { 3 } } \), we can use the method of partial fractions. First, we rewrite the integrand: \[ \frac{x - 1}{(x + 1)^3} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3} \] Next, we find a common denominator and equate the numerators: \[ x - 1 = A(x + 1)^2 + B(x + 1) + C \] Expanding the right-hand side gives: \[ x - 1 = A(x^2 + 2x + 1) + B(x + 1) + C = Ax^2 + (2A + B)x + (A + B + C) \] Now, we can compare coefficients on both sides: 1. **Coefficient of \( x^2 \)**: \( A = 0 \) 2. **Coefficient of \( x \)**: \( 2A + B = 1 \) → since \( A = 0 \), we get \( B = 1 \) 3. **Constant term**: \( A + B + C = -1 \) → substituting \( A = 0 \) and \( B = 1 \) gives \( 1 + C = -1 \) → thus \( C = -2 \) So we have \( A = 0 \), \( B = 1 \), and \( C = -2 \). Thus, the integral can be rewritten as: \[ \int \frac { x - 1 } { ( x + 1 ) ^ { 3 } } d x = \int \left( \frac{1}{(x + 1)^2} - \frac{2}{(x + 1)^3} \right) dx \] Now, integrate term by term: \[ = \left( -\frac{1}{x + 1} + \frac{2}{2(x + 1)^2} \right) + C = -\frac{1}{x + 1} + \frac{1}{(x + 1)^2} + C \] Therefore, the integral evaluates to: \[ -\frac{1}{x + 1} + \frac{1}{(x + 1)^2} + C \] Where \( C \) is the constant of integration.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy