Answer
Here are the simplified solutions for each problem:
1. **Problem 2.1:**
\[
-\frac{252x^6}{5}
\]
2. **Problem 2.2:**
\[
\frac{823 - 100 \cdot 5^x \cdot 2^{2+x}}{25 \cdot 2^{2+x}}
\]
3. **Problem 2.3:**
\[
49
\]
4. **Problem 2.4:**
\[
0.4
\]
5. **Problem 2.5:**
\[
\frac{17}{12}
\]
6. **Problem 2.6:**
\[
\frac{35}{17}
\]
7. **Problem 2.7:**
\[
\frac{5^{1000} - 5^{502} + 24}{5^{501} - 5}
\]
8. **Problem 2.8:**
\[
\sqrt{1a + 1} \times \sqrt[3]{8^{a + 1}}
\]
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{1\times a+1}\times \left(8^{a+1}\right)^{\frac{1}{3}}\)
- step1: Multiply:
\(\sqrt{a+1}\times \left(8^{a+1}\right)^{\frac{1}{3}}\)
- step2: Multiply the exponents:
\(\sqrt{a+1}\times 8^{\left(a+1\right)\times \frac{1}{3}}\)
- step3: Multiply the terms:
\(\sqrt{a+1}\times 8^{\frac{1}{3}a+\frac{1}{3}}\)
- step4: Rewrite the expression:
\(8^{\frac{1}{3}a+\frac{1}{3}}\sqrt{a+1}\)
Calculate or simplify the expression \( (7^(n+1) * 14^(n-1)) / (98^(n-1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(7^{n+1}\times 14^{n-1}\right)}{98^{n-1}}\)
- step1: Remove the parentheses:
\(\frac{7^{n+1}\times 14^{n-1}}{98^{n-1}}\)
- step2: Factor the expression:
\(\frac{7^{n+1}\times 14^{n-1}}{7^{n-1}\times 14^{n-1}}\)
- step3: Reduce the fraction:
\(7^{2}\)
- step4: Evaluate the power:
\(49\)
Calculate or simplify the expression \( (2^(x-1) + 2^(x+3)) / (3 * 2^(x+1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2^{x-1}+2^{x+3}\right)}{\left(3\times 2^{x+1}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{x-1}+2^{x+3}}{3\times 2^{x+1}}\)
- step2: Add the terms:
\(\frac{17\times 2^{x-1}}{3\times 2^{x+1}}\)
- step3: Reduce the fraction:
\(\frac{17}{3\times 2^{2}}\)
- step4: Calculate:
\(\frac{17}{12}\)
Calculate or simplify the expression \( 2.1 * (-6 * x^2)^3 * (-x^(-3))^(-2) / (-3 * x^3)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2.1\left(-6x^{2}\right)^{3}\left(-x^{-3}\right)^{-2}}{\left(-3x^{3}\right)^{2}}\)
- step1: Multiply the exponents:
\(\frac{2.1\left(-6x^{2}\right)^{3}x^{-3\left(-2\right)}}{\left(-3x^{3}\right)^{2}}\)
- step2: Multiply the numbers:
\(\frac{2.1\left(-6x^{2}\right)^{3}x^{6}}{\left(-3x^{3}\right)^{2}}\)
- step3: Factor the expression:
\(\frac{2.1\left(-24\right)\times 9x^{6}\times x^{6}}{9x^{6}}\)
- step4: Reduce the fraction:
\(2.1\left(-24\right)x^{6}\)
- step5: Rewrite the expression:
\(-2.1\times 24x^{6}\)
- step6: Multiply the terms:
\(-50.4x^{6}\)
- step7: Rewrite the expression:
\(-\frac{252}{5}x^{6}\)
- step8: Rewrite the expression:
\(-\frac{252x^{6}}{5}\)
Calculate or simplify the expression \( (25^(n-1) * 6^n) / (10^(n-1) * 15^n) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(25^{n-1}\times 6^{n}\right)}{\left(10^{n-1}\times 15^{n}\right)}\)
- step1: Remove the parentheses:
\(\frac{25^{n-1}\times 6^{n}}{10^{n-1}\times 15^{n}}\)
- step2: Factor the expression:
\(\frac{5^{2n-2}\times 6^{n}}{5^{n-1}\times 2^{n-1}\times 15^{n}}\)
- step3: Reduce the fraction:
\(\frac{5^{n-1}\times 6^{n}}{2^{n-1}\times 15^{n}}\)
- step4: Factor the expression:
\(\frac{5^{n-1}\times 6^{n}}{2^{n-1}\times 5^{n}\times 3^{n}}\)
- step5: Reduce the fraction:
\(\frac{6^{n}}{2^{n-1}\times 5\times 3^{n}}\)
- step6: Factor the expression:
\(\frac{2^{n}\times 3^{n}}{2^{n-1}\times 5\times 3^{n}}\)
- step7: Reduce the fraction:
\(\frac{2}{5}\)
Calculate or simplify the expression \( (5^(x+2) - 4 * 5^x) / (5^(x-1) + 2 * 5^(x+1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(5^{x+2}-4\times 5^{x}\right)}{\left(5^{x-1}+2\times 5^{x+1}\right)}\)
- step1: Remove the parentheses:
\(\frac{5^{x+2}-4\times 5^{x}}{5^{x-1}+2\times 5^{x+1}}\)
- step2: Subtract the terms:
\(\frac{21\times 5^{x}}{5^{x-1}+2\times 5^{x+1}}\)
- step3: Add the terms:
\(\frac{21\times 5^{x}}{51\times 5^{x-1}}\)
- step4: Reduce the fraction:
\(\frac{7\times 5}{17}\)
- step5: Calculate:
\(\frac{35}{17}\)
Calculate or simplify the expression \( 2.23 * 0.5^x + 6 * 0.5^x - 4 / (5^(-x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(2.23\times 0.5^{x}+6\times 0.5^{x}-\frac{4}{5^{-x}}\)
- step1: Convert the expressions:
\(2.23\left(\frac{1}{2}\right)^{x}+6\times 0.5^{x}-\frac{4}{5^{-x}}\)
- step2: Convert the expressions:
\(2.23\left(\frac{1}{2}\right)^{x}+6\left(\frac{1}{2}\right)^{x}-\frac{4}{5^{-x}}\)
- step3: Divide the terms:
\(2.23\left(\frac{1}{2}\right)^{x}+6\left(\frac{1}{2}\right)^{x}-4\times 5^{x}\)
- step4: Multiply the terms:
\(2.23\times 2^{-x}+6\left(\frac{1}{2}\right)^{x}-4\times 5^{x}\)
- step5: Multiply the terms:
\(2.23\times 2^{-x}+6\times 2^{-x}-4\times 5^{x}\)
- step6: Add the terms:
\(\frac{823}{25\times 2^{2+x}}-4\times 5^{x}\)
- step7: Reduce fractions to a common denominator:
\(\frac{823}{25\times 2^{2+x}}-\frac{4\times 5^{x}\times 25\times 2^{2+x}}{25\times 2^{2+x}}\)
- step8: Transform the expression:
\(\frac{823-4\times 5^{x}\times 25\times 2^{2+x}}{25\times 2^{2+x}}\)
- step9: Multiply the terms:
\(\frac{823-100\times 5^{x}\times 2^{2+x}}{25\times 2^{2+x}}\)
Let's solve each of the problems step by step:
### Problem 2.1
**Expression:**
\[
2.1 \times (-6x^2)^3 \times (-x^{-3})^{-2} \div (-3x^3)^2
\]
**Solution:**
1. Calculate \((-6x^2)^3\):
\[
(-6)^3 \times (x^2)^3 = -216x^6
\]
2. Calculate \((-x^{-3})^{-2}\):
\[
(-1)^{-2} \times (x^{-3})^{-2} = 1 \times x^6 = x^6
\]
3. Calculate \((-3x^3)^2\):
\[
(-3)^2 \times (x^3)^2 = 9x^6
\]
4. Combine everything:
\[
2.1 \times (-216x^6) \times (x^6) \div (9x^6) = 2.1 \times -216 \div 9 \times x^{12-6} = -\frac{252x^6}{5}
\]
### Problem 2.2
**Expression:**
\[
2.23 \cdot 0.5^x + 6 \cdot 0.5^x - \frac{4}{5^{-x}}
\]
**Solution:**
1. Combine the first two terms:
\[
(2.23 + 6) \cdot 0.5^x = 8.23 \cdot 0.5^x
\]
2. Rewrite \(\frac{4}{5^{-x}}\) as \(4 \cdot 5^x\):
\[
8.23 \cdot 0.5^x - 4 \cdot 5^x
\]
3. The final expression is:
\[
\frac{823 - 100 \cdot 5^x \cdot 2^{2+x}}{25 \cdot 2^{2+x}}
\]
### Problem 2.3
**Expression:**
\[
\frac{7^{n+1} \cdot 14^{n-1}}{98^{n-1}}
\]
**Solution:**
1. Rewrite \(14\) and \(98\):
\[
14 = 2 \cdot 7 \quad \text{and} \quad 98 = 14 \cdot 7 = 2 \cdot 7^2
\]
2. Substitute:
\[
\frac{7^{n+1} \cdot (2 \cdot 7)^{n-1}}{(2 \cdot 7^2)^{n-1}} = \frac{7^{n+1} \cdot 2^{n-1} \cdot 7^{n-1}}{2^{n-1} \cdot 7^{2(n-1)}}
\]
3. Simplify:
\[
= \frac{7^{2n}}{7^{2n-2}} = 49
\]
### Problem 2.4
**Expression:**
\[
\frac{25^{n-1} \cdot 6^n}{10^{n-1} \cdot 15^n}
\]
**Solution:**
1. Rewrite \(10\) and \(15\):
\[
10 = 2 \cdot 5 \quad \text{and} \quad 15 = 3 \cdot 5
\]
2. Substitute:
\[
= \frac{25^{n-1} \cdot 6^n}{(2 \cdot 5)^{n-1} \cdot (3 \cdot 5)^n}
\]
3. Simplify:
\[
= \frac{25^{n-1} \cdot 6^n}{2^{n-1} \cdot 5^{n-1} \cdot 3^n \cdot 5^n} = \frac{25^{n-1} \cdot 6^n}{2^{n-1} \cdot 3^n \cdot 5^{2n-1}}
\]
4. The final result is:
\[
\frac{2}{5} \quad \text{or} \quad 0.4
\]
### Problem 2.5
**Expression:**
\[
\frac{2^{x-1} + 2^{x+3}}{3 \cdot 2^{x+1}}
\]
**Solution:**
1. Factor out \(2^{x-1}\):
\[
= \frac{2^{x-1}(1 + 2^4)}{3 \cdot 2^{x+1}} = \frac{2^{x-1} \cdot 17}{3 \cdot 2^{x+1}}
\]
2. Simplify:
\[
= \frac{17}{3 \cdot 2^2} = \frac{17}{12}
\]
### Problem 2.6
**Expression:**
\[
\frac{5^{x+2} - 4 \cdot 5^x}{5^{x-1} + 2 \cdot 5^{x+1}}
\]
**Solution:**
1. Factor out \(5^x\) from the numerator:
\[
= \frac{5^x(5^2 - 4)}{5^{x-1} + 2 \cdot 5^{x+1}} = \frac{5^x(25 - 4)}{5^{x-1} + 2 \cdot 5^{x+1}} = \frac{21 \cdot 5^x}{5^{x-1} + 2 \cdot 5^{x+1}}
\]
2. Simplify the denominator:
\[
= \frac{21 \cdot 5^x}{5^{x-1}(1 + 2 \cdot 5^2)} = \frac{21}{\frac{1 + 50}{5}} = \frac{35}{17}
\]
### Problem 2.7
**Expression:**
\[
\frac{5^{1000} - 5^{502} + 24}{5^{501} - 5}
\]
**Solution:**
1. Factor out \(5^{501}\) from the numerator:
\[
= \frac{5^{501}(5^{499} - 1) + 24}{5^{501} - 5}
\]
2. The expression
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution