Question
upstudy study bank question image url

\( \left. \begin{array} { l } { 2.1 ( - 6 x ^ { 2 } ) ^ { 3 } \times ( - x ^ { - 3 } ) ^ { - 2 } \div ( - 3 x ^ { 3 } ) ^ { 2 } } \\ { 2.23 .5 ^ { x } + 6.5 ^ { x } - \frac { 4 } { 5 ^ { - x } } } \\ { 2.3 \frac { 7 ^ { n + 1 } \cdot 14 ^ { n - 1 } } { 98 ^ { n - 1 } } } \\ { 2.4 \frac { 25 ^ { n - 1 } \cdot 6 ^ { n } } { 10 ^ { n - 1 } \cdot 15 ^ { n } } } \\ { 2.5 \frac { 2 ^ { x - 1 } + 2 ^ { x + 3 } } { 3.2 ^ { x + 1 } } } \\ { 2.6 \frac { 5 ^ { x + 2 } - 4.5 ^ { x } } { 5 ^ { x - 1 } + 2.5 ^ { x + 1 } } } \\ { 2.7 \frac { 5 ^ { 1000 } - 5 ^ { 502 } + 24 } { 5 ^ { 501 } - 5 } } \\ { \sqrt { 1 a + 1 } \times \sqrt[ 3 ] { 8 ^ { a + 1 } } } \end{array} \right. \)

Ask by Osborne Bird. in South Africa
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified solutions for each problem: 1. **Problem 2.1:** \[ -\frac{252x^6}{5} \] 2. **Problem 2.2:** \[ \frac{823 - 100 \cdot 5^x \cdot 2^{2+x}}{25 \cdot 2^{2+x}} \] 3. **Problem 2.3:** \[ 49 \] 4. **Problem 2.4:** \[ 0.4 \] 5. **Problem 2.5:** \[ \frac{17}{12} \] 6. **Problem 2.6:** \[ \frac{35}{17} \] 7. **Problem 2.7:** \[ \frac{5^{1000} - 5^{502} + 24}{5^{501} - 5} \] 8. **Problem 2.8:** \[ \sqrt{1a + 1} \times \sqrt[3]{8^{a + 1}} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\sqrt{1\times a+1}\times \left(8^{a+1}\right)^{\frac{1}{3}}\) - step1: Multiply: \(\sqrt{a+1}\times \left(8^{a+1}\right)^{\frac{1}{3}}\) - step2: Multiply the exponents: \(\sqrt{a+1}\times 8^{\left(a+1\right)\times \frac{1}{3}}\) - step3: Multiply the terms: \(\sqrt{a+1}\times 8^{\frac{1}{3}a+\frac{1}{3}}\) - step4: Rewrite the expression: \(8^{\frac{1}{3}a+\frac{1}{3}}\sqrt{a+1}\) Calculate or simplify the expression \( (7^(n+1) * 14^(n-1)) / (98^(n-1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(7^{n+1}\times 14^{n-1}\right)}{98^{n-1}}\) - step1: Remove the parentheses: \(\frac{7^{n+1}\times 14^{n-1}}{98^{n-1}}\) - step2: Factor the expression: \(\frac{7^{n+1}\times 14^{n-1}}{7^{n-1}\times 14^{n-1}}\) - step3: Reduce the fraction: \(7^{2}\) - step4: Evaluate the power: \(49\) Calculate or simplify the expression \( (2^(x-1) + 2^(x+3)) / (3 * 2^(x+1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{x-1}+2^{x+3}\right)}{\left(3\times 2^{x+1}\right)}\) - step1: Remove the parentheses: \(\frac{2^{x-1}+2^{x+3}}{3\times 2^{x+1}}\) - step2: Add the terms: \(\frac{17\times 2^{x-1}}{3\times 2^{x+1}}\) - step3: Reduce the fraction: \(\frac{17}{3\times 2^{2}}\) - step4: Calculate: \(\frac{17}{12}\) Calculate or simplify the expression \( 2.1 * (-6 * x^2)^3 * (-x^(-3))^(-2) / (-3 * x^3)^2 \). Simplify the expression by following steps: - step0: Solution: \(\frac{2.1\left(-6x^{2}\right)^{3}\left(-x^{-3}\right)^{-2}}{\left(-3x^{3}\right)^{2}}\) - step1: Multiply the exponents: \(\frac{2.1\left(-6x^{2}\right)^{3}x^{-3\left(-2\right)}}{\left(-3x^{3}\right)^{2}}\) - step2: Multiply the numbers: \(\frac{2.1\left(-6x^{2}\right)^{3}x^{6}}{\left(-3x^{3}\right)^{2}}\) - step3: Factor the expression: \(\frac{2.1\left(-24\right)\times 9x^{6}\times x^{6}}{9x^{6}}\) - step4: Reduce the fraction: \(2.1\left(-24\right)x^{6}\) - step5: Rewrite the expression: \(-2.1\times 24x^{6}\) - step6: Multiply the terms: \(-50.4x^{6}\) - step7: Rewrite the expression: \(-\frac{252}{5}x^{6}\) - step8: Rewrite the expression: \(-\frac{252x^{6}}{5}\) Calculate or simplify the expression \( (25^(n-1) * 6^n) / (10^(n-1) * 15^n) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(25^{n-1}\times 6^{n}\right)}{\left(10^{n-1}\times 15^{n}\right)}\) - step1: Remove the parentheses: \(\frac{25^{n-1}\times 6^{n}}{10^{n-1}\times 15^{n}}\) - step2: Factor the expression: \(\frac{5^{2n-2}\times 6^{n}}{5^{n-1}\times 2^{n-1}\times 15^{n}}\) - step3: Reduce the fraction: \(\frac{5^{n-1}\times 6^{n}}{2^{n-1}\times 15^{n}}\) - step4: Factor the expression: \(\frac{5^{n-1}\times 6^{n}}{2^{n-1}\times 5^{n}\times 3^{n}}\) - step5: Reduce the fraction: \(\frac{6^{n}}{2^{n-1}\times 5\times 3^{n}}\) - step6: Factor the expression: \(\frac{2^{n}\times 3^{n}}{2^{n-1}\times 5\times 3^{n}}\) - step7: Reduce the fraction: \(\frac{2}{5}\) Calculate or simplify the expression \( (5^(x+2) - 4 * 5^x) / (5^(x-1) + 2 * 5^(x+1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(5^{x+2}-4\times 5^{x}\right)}{\left(5^{x-1}+2\times 5^{x+1}\right)}\) - step1: Remove the parentheses: \(\frac{5^{x+2}-4\times 5^{x}}{5^{x-1}+2\times 5^{x+1}}\) - step2: Subtract the terms: \(\frac{21\times 5^{x}}{5^{x-1}+2\times 5^{x+1}}\) - step3: Add the terms: \(\frac{21\times 5^{x}}{51\times 5^{x-1}}\) - step4: Reduce the fraction: \(\frac{7\times 5}{17}\) - step5: Calculate: \(\frac{35}{17}\) Calculate or simplify the expression \( 2.23 * 0.5^x + 6 * 0.5^x - 4 / (5^(-x)) \). Simplify the expression by following steps: - step0: Solution: \(2.23\times 0.5^{x}+6\times 0.5^{x}-\frac{4}{5^{-x}}\) - step1: Convert the expressions: \(2.23\left(\frac{1}{2}\right)^{x}+6\times 0.5^{x}-\frac{4}{5^{-x}}\) - step2: Convert the expressions: \(2.23\left(\frac{1}{2}\right)^{x}+6\left(\frac{1}{2}\right)^{x}-\frac{4}{5^{-x}}\) - step3: Divide the terms: \(2.23\left(\frac{1}{2}\right)^{x}+6\left(\frac{1}{2}\right)^{x}-4\times 5^{x}\) - step4: Multiply the terms: \(2.23\times 2^{-x}+6\left(\frac{1}{2}\right)^{x}-4\times 5^{x}\) - step5: Multiply the terms: \(2.23\times 2^{-x}+6\times 2^{-x}-4\times 5^{x}\) - step6: Add the terms: \(\frac{823}{25\times 2^{2+x}}-4\times 5^{x}\) - step7: Reduce fractions to a common denominator: \(\frac{823}{25\times 2^{2+x}}-\frac{4\times 5^{x}\times 25\times 2^{2+x}}{25\times 2^{2+x}}\) - step8: Transform the expression: \(\frac{823-4\times 5^{x}\times 25\times 2^{2+x}}{25\times 2^{2+x}}\) - step9: Multiply the terms: \(\frac{823-100\times 5^{x}\times 2^{2+x}}{25\times 2^{2+x}}\) Let's solve each of the problems step by step: ### Problem 2.1 **Expression:** \[ 2.1 \times (-6x^2)^3 \times (-x^{-3})^{-2} \div (-3x^3)^2 \] **Solution:** 1. Calculate \((-6x^2)^3\): \[ (-6)^3 \times (x^2)^3 = -216x^6 \] 2. Calculate \((-x^{-3})^{-2}\): \[ (-1)^{-2} \times (x^{-3})^{-2} = 1 \times x^6 = x^6 \] 3. Calculate \((-3x^3)^2\): \[ (-3)^2 \times (x^3)^2 = 9x^6 \] 4. Combine everything: \[ 2.1 \times (-216x^6) \times (x^6) \div (9x^6) = 2.1 \times -216 \div 9 \times x^{12-6} = -\frac{252x^6}{5} \] ### Problem 2.2 **Expression:** \[ 2.23 \cdot 0.5^x + 6 \cdot 0.5^x - \frac{4}{5^{-x}} \] **Solution:** 1. Combine the first two terms: \[ (2.23 + 6) \cdot 0.5^x = 8.23 \cdot 0.5^x \] 2. Rewrite \(\frac{4}{5^{-x}}\) as \(4 \cdot 5^x\): \[ 8.23 \cdot 0.5^x - 4 \cdot 5^x \] 3. The final expression is: \[ \frac{823 - 100 \cdot 5^x \cdot 2^{2+x}}{25 \cdot 2^{2+x}} \] ### Problem 2.3 **Expression:** \[ \frac{7^{n+1} \cdot 14^{n-1}}{98^{n-1}} \] **Solution:** 1. Rewrite \(14\) and \(98\): \[ 14 = 2 \cdot 7 \quad \text{and} \quad 98 = 14 \cdot 7 = 2 \cdot 7^2 \] 2. Substitute: \[ \frac{7^{n+1} \cdot (2 \cdot 7)^{n-1}}{(2 \cdot 7^2)^{n-1}} = \frac{7^{n+1} \cdot 2^{n-1} \cdot 7^{n-1}}{2^{n-1} \cdot 7^{2(n-1)}} \] 3. Simplify: \[ = \frac{7^{2n}}{7^{2n-2}} = 49 \] ### Problem 2.4 **Expression:** \[ \frac{25^{n-1} \cdot 6^n}{10^{n-1} \cdot 15^n} \] **Solution:** 1. Rewrite \(10\) and \(15\): \[ 10 = 2 \cdot 5 \quad \text{and} \quad 15 = 3 \cdot 5 \] 2. Substitute: \[ = \frac{25^{n-1} \cdot 6^n}{(2 \cdot 5)^{n-1} \cdot (3 \cdot 5)^n} \] 3. Simplify: \[ = \frac{25^{n-1} \cdot 6^n}{2^{n-1} \cdot 5^{n-1} \cdot 3^n \cdot 5^n} = \frac{25^{n-1} \cdot 6^n}{2^{n-1} \cdot 3^n \cdot 5^{2n-1}} \] 4. The final result is: \[ \frac{2}{5} \quad \text{or} \quad 0.4 \] ### Problem 2.5 **Expression:** \[ \frac{2^{x-1} + 2^{x+3}}{3 \cdot 2^{x+1}} \] **Solution:** 1. Factor out \(2^{x-1}\): \[ = \frac{2^{x-1}(1 + 2^4)}{3 \cdot 2^{x+1}} = \frac{2^{x-1} \cdot 17}{3 \cdot 2^{x+1}} \] 2. Simplify: \[ = \frac{17}{3 \cdot 2^2} = \frac{17}{12} \] ### Problem 2.6 **Expression:** \[ \frac{5^{x+2} - 4 \cdot 5^x}{5^{x-1} + 2 \cdot 5^{x+1}} \] **Solution:** 1. Factor out \(5^x\) from the numerator: \[ = \frac{5^x(5^2 - 4)}{5^{x-1} + 2 \cdot 5^{x+1}} = \frac{5^x(25 - 4)}{5^{x-1} + 2 \cdot 5^{x+1}} = \frac{21 \cdot 5^x}{5^{x-1} + 2 \cdot 5^{x+1}} \] 2. Simplify the denominator: \[ = \frac{21 \cdot 5^x}{5^{x-1}(1 + 2 \cdot 5^2)} = \frac{21}{\frac{1 + 50}{5}} = \frac{35}{17} \] ### Problem 2.7 **Expression:** \[ \frac{5^{1000} - 5^{502} + 24}{5^{501} - 5} \] **Solution:** 1. Factor out \(5^{501}\) from the numerator: \[ = \frac{5^{501}(5^{499} - 1) + 24}{5^{501} - 5} \] 2. The expression

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that the study of exponents and logarithms can be traced back to ancient civilizations? The Babylonians used rudimentary forms of exponentiation, and by the time of ancient Greece, mathematicians like Euclid were developing more systematic approaches. Fast forward to the 17th century, when John Napier published his work on logarithms, bridging the gap between multiplication and addition, and revolutionizing calculations. Exponents have been a crucial part of math history, shaping everything from architecture to astronomy! Finding real-world applications for these mathematical concepts is easier than you might think! Exponents and logarithms appear everywhere – from calculating compound interest and population growth to analyzing sound intensity and earthquake magnitudes. Engineers use exponential decay in materials science to predict how substances degrade over time. In finance, understanding exponential functions helps in modeling investment growth. So the next time you see an equation with exponents, remember that it's more than just numbers on a page; it has real-life implications!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy