Question
upstudy study bank question image url

12. \( \frac{x-a-b}{c}+\frac{x-b-c}{a}+\frac{x-c-a}{b}=3 \) tenglamani yeching. A) \( x=a b c \) B) \( x=a+b+c \) C) \( \emptyset \) D) \( x=1 \) 13. Arifmetik progressiyada \( a_{m+n}=x \) va \( a_{m-n}= \) \( y \) bo'lsa, \( a_{m} \) ni toping. A) \( x \cdot y \) B) \( \frac{x-y}{2} \) C) \( \frac{x+y}{2} \) D) \( x+y \) 14. \( b \) ning qanday qiymátlarida \( y=b^{2}(x+1)+ \) \( 4 b(x-1)+5 x+9 \) chiziqli funksiya o'suvchi bo'ladi? A) \( b \in(-5 ;-1) \) C) \( b \in(-4 ;-1) \) B) \( b \in(1 ; 5) \) D) \( b \in R \)

Ask by Salinas Hobbs. in Uzbekistan
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**12. Tenglama:** \[ \frac{x - a - b}{c} + \frac{x - b - c}{a} + \frac{x - c - a}{b} = 3 \] **To'g'ri javob:** **B) \( x = a + b + c \)** --- **13. Masala:** Arifmetik progressiyada: \[ a_{m+n} = x \quad \text{va} \quad a_{m-n} = y \] bo'lsa, \( a_m \) ni toping. **To'g'ri javob:** **C) \( \frac{x + y}{2} \)** --- **14. Masala:** Funksiya: \[ y = b^{2}(x + 1) + 4b(x - 1) + 5x + 9 \] qachon o'suvchi bo'ladi? **To'g'ri javob:** **D) \( b \in \mathbb{R} \)**

Solution

**12. Tenglama:** \[ \frac{x - a - b}{c} + \frac{x - b - c}{a} + \frac{x - c - a}{b} = 3 \] **Yeșilish:** Har bir bo'linmani alohida ko'rib chiqamiz: \[ \frac{x - a - b}{c} = \frac{x}{c} - \frac{a + b}{c} \] \[ \frac{x - b - c}{a} = \frac{x}{a} - \frac{b + c}{a} \] \[ \frac{x - c - a}{b} = \frac{x}{b} - \frac{c + a}{b} \] Ularni qo'shganda: \[ \frac{x}{c} + \frac{x}{a} + \frac{x}{b} - \left( \frac{a + b}{c} + \frac{b + c}{a} + \frac{c + a}{b} \right) = 3 \] Bu yerda ko'rinib turibdiki: \[ x \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - \left( \frac{a + b}{c} + \frac{b + c}{a} + \frac{c + a}{b} \right) = 3 \] Agar \( x = a + b + c \) deb qo'ysak: \[ (a + b + c) \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - \left( \frac{a + b}{c} + \frac{b + c}{a} + \frac{c + a}{b} \right) = 3 \] Bu tenglama to'g'ri keladi. **To'g'ri javob:** **B) \( x = a + b + c \)** --- **13. Masala:** Arifmetik progressiyada: \[ a_{m+n} = x \quad \text{va} \quad a_{m-n} = y \] bo'lsa, \( a_m \) ni toping. **Yeșilish:** Arifmetik progressiyada istalgan ikkita tenglama bo'yicha: \[ a_{m+n} + a_{m-n} = 2a_m \] Demak: \[ x + y = 2a_m \implies a_m = \frac{x + y}{2} \] **To'g'ri javob:** **C) \( \frac{x + y}{2} \)** --- **14. Masala:** Funksiya: \[ y = b^{2}(x + 1) + 4b(x - 1) + 5x + 9 \] qachon o'suvchi bo'ladi? **Yeșilish:** Funksiyani soddalashtiramiz: \[ y = b^2 x + b^2 + 4b x - 4b + 5x + 9 = (b^2 + 4b + 5)x + (b^2 - 4b + 9) \] Bu chiziqli funksiya bo'lib, o'suvchi bo'lishi uchun koeffitsient \( x \) ga nisbatan musbat bo'lishi kerak: \[ b^2 + 4b + 5 > 0 \] Diskriminant: \[ D = 16 - 20 = -4 < 0 \] Demak, kvadrat har doim musbat bo'ladi, ya'ni har qanday \( b \) uchun \( y \) o'suvchi. **To'g'ri javob:** **D) \( b \in \mathbb{R} \)**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Bu tenglamani yechishdan avval, har bir kesmani \( x \) ga nisbatan tartibga keltirish va oddiy emas, balki tenglama aylanmasi uchun ko'paytirilishi kerak. Shunday qilib, juda ko'p oddiy manipulyatsiyalar orqali siz oxir-oqibat \( x=a+b+c \) natijasiga kelasiz. Arifmetik progressiyada, elementlar orasidagi farq doimiy bo’ladi. Shunday ekan, \( a_{m} \) ni topish uchun, \( a_{m+n} = x \) va \( a_{m-n} = y \) ni hisobga olib, arifmetik progressiyaning xususiyatlarini qo’llagan holda, natijaga kelishingiz mumkin: \( a_{m} = \frac{x+y}{2} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy