Question
Make me SIMPLE DIRECTION: Write each radical in simplest form. \( \begin{array}{lll}\text { 1. } \sqrt{\frac{9}{16}} & \text { 4. } \frac{2}{\sqrt{2}} \\ \text { 2. } \frac{\sqrt{25}}{\sqrt{100}} & \text { 5. } & -\frac{1}{3 \sqrt{2}} \\ \text { 3. } & -\sqrt{\frac{4}{5}}\end{array} \)
Ask by Davies Fernandez. in the Philippines
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
1. \( \frac{3}{4} \)
2. \( \frac{1}{2} \)
3. \( -\frac{2\sqrt{5}}{5} \)
4. \( \sqrt{2} \)
5. \( -\frac{\sqrt{2}}{6} \)
Solution
Sure! Let's simplify each radical step by step.
### 1. \( \sqrt{\frac{9}{16}} \)
\[
\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4}
\]
**Simplified Form:** \( \frac{3}{4} \)
---
### 2. \( \frac{\sqrt{25}}{\sqrt{100}} \)
\[
\frac{\sqrt{25}}{\sqrt{100}} = \frac{5}{10} = \frac{1}{2}
\]
**Simplified Form:** \( \frac{1}{2} \)
---
### 3. \( -\sqrt{\frac{4}{5}} \)
First, simplify the square root:
\[
-\sqrt{\frac{4}{5}} = -\frac{\sqrt{4}}{\sqrt{5}} = -\frac{2}{\sqrt{5}}
\]
To rationalize the denominator:
\[
-\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}
\]
**Simplified Form:** \( -\frac{2\sqrt{5}}{5} \)
---
### 4. \( \frac{2}{\sqrt{2}} \)
Rationalize the denominator:
\[
\frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}
\]
**Simplified Form:** \( \sqrt{2} \)
---
### 5. \( -\frac{1}{3\sqrt{2}} \)
Rationalize the denominator:
\[
-\frac{1}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = -\frac{\sqrt{2}}{3 \times 2} = -\frac{\sqrt{2}}{6}
\]
**Simplified Form:** \( -\frac{\sqrt{2}}{6} \)
---
### Summary of Simplified Radicals
1. \( \frac{3}{4} \)
2. \( \frac{1}{2} \)
3. \( -\frac{2\sqrt{5}}{5} \)
4. \( \sqrt{2} \)
5. \( -\frac{\sqrt{2}}{6} \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
Sure, let’s simplify those radicals step by step! 1. \( \sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4} \) 2. \( \frac{\sqrt{25}}{\sqrt{100}} = \frac{5}{10} = \frac{1}{2} \) 3. \( -\sqrt{\frac{4}{5}} = -\frac{\sqrt{4}}{\sqrt{5}} = -\frac{2}{\sqrt{5}} \) 4. \( \frac{2}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{2} = \sqrt{2} \) 5. \( -\frac{1}{3 \sqrt{2}} = -\frac{1 \times \sqrt{2}}{3 \times 2} = -\frac{\sqrt{2}}{6} \) So the simplified forms are: 1. \( \frac{3}{4} \) 2. \( \frac{1}{2} \) 3. \( -\frac{2}{\sqrt{5}} \) 4. \( \sqrt{2} \) 5. \( -\frac{\sqrt{2}}{6} \)