Question

\( y=\sinh (x) \)

Ask by Simmons Sherman. in the United Kingdom
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

双曲正弦函数(\(\sinh(x)\))的定义是: \[ y = \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] 它是一个奇函数,导数为\(\cosh(x)\),反函数为\(\sinh^{-1}(x) = \ln\left(x + \sqrt{x^{2} + 1}\right)\)。双曲正弦函数在整个实数范围内严格递增,图像关于原点对称。在工程学、物理学和复变函数等领域有广泛应用。

Solution

双曲正弦函数(\(\sinh(x)\))的定义及相关性质如下: ### 定义 双曲正弦函数定义为: \[ y = \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] 其中,\(e\) 是自然对数的底数,约等于2.71828。 ### 性质 1. **奇函数性质**: \[ \sinh(-x) = -\sinh(x) \] 这意味着双曲正弦函数关于原点对称。 2. **导数**: \[ \frac{d}{dx} \sinh(x) = \cosh(x) \] 其中,\(\cosh(x)\) 是双曲余弦函数。 3. **反函数**: 双曲正弦函数的反函数称为双曲反正弦函数,记作 \(\sinh^{-1}(x)\),其定义为: \[ \sinh^{-1}(x) = \ln\left(x + \sqrt{x^{2} + 1}\right) \] 4. **幂级数展开**: \[ \sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \] 5. **重要恒等式**: \[ \cosh^{2}(x) - \sinh^{2}(x) = 1 \] ### 图像特征 - **对称性**:由于\(\sinh(x)\)是奇函数,其图像关于原点对称。 - **单调性**:\(\sinh(x)\)在整个实数范围内是严格递增的。 - **渐近行为**: - 当 \(x \to +\infty\) 时,\(\sinh(x) \approx \frac{e^{x}}{2} \to +\infty\) - 当 \(x \to -\infty\) 时,\(\sinh(x) \approx -\frac{e^{-x}}{2} \to -\infty\) ### 应用 双曲正弦函数在多个领域有广泛应用,包括但不限于: - **工程学**:例如描述悬链线(链条或电缆在重力作用下的形状)。 - **物理学**:在解决某些微分方程,如热传导方程和波动方程时出现。 - **复变函数**:双曲函数与三角函数在复数域有密切联系,常用于解析函数的研究。 ### 示例 计算 \(\sinh(1)\) 的值: \[ \sinh(1) = \frac{e^{1} - e^{-1}}{2} \approx \frac{2.71828 - 0.36788}{2} \approx \frac{2.3504}{2} \approx 1.1752 \] 希望以上内容能帮助您更好地理解双曲正弦函数。如果您有更多问题,欢迎继续提问!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

The hyperbolic sine function \( \sinh(x) \) is derived from the exponential function and can be expressed as \( \sinh(x) = \frac{e^x - e^{-x}}{2} \). This function has fascinating properties, such as being odd (i.e., \( \sinh(-x) = -\sinh(x) \)) and exhibiting rapid growth as \( x \) increases. It is commonly used in physics, particularly in the study of wave functions and the behavior of certain types of differential equations. You can encounter \( \sinh(x) \) in real-world applications like calculating the shape of hanging cables (catenaries). When engineers need to determine the loads and stress on structures, they often use the hyperbolic functions to represent these real-life scenarios mathematically. So, whether you're swinging on a playground swing or admiring the Golden Gate Bridge, hyperbolic sine is quietly playing a role in understanding the physics of everyday structures!

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy