Question

\( y=\sinh (x) \)

Ask by Daniel Gordon. in China
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

双曲正弦函数 \( y = \sinh(x) \) 的定义是: \[ y = \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] **特点和性质:** 1. **图像**:函数图像关于原点对称,当 \( x \) 很大时,\( \sinh(x) \) 会变得非常大,当 \( x \) 很小时,\( \sinh(x) \) 会变得非常小。 2. **性质**: - **奇函数**:\( \sinh(-x) = -\sinh(x) \)。 - **导数**:\( \frac{d}{dx} \sinh(x) = \cosh(x) \)。 - **积分**:\( \int \sinh(x) \, dx = \cosh(x) + C \)。 **应用**:双曲正弦函数在工程、物理和数学中有很多应用,比如描述双曲线的性质、解决微分方程以及在相对论中描述时空关系。 **计算示例**: 计算 \( \sinh(1) \): \[ \sinh(1) = \frac{e^{1} - e^{-1}}{2} \approx \frac{2.71828 - 0.36788}{2} \approx 1.1752 \] 希望这些信息能帮助你更好地理解双曲正弦函数!

Solution

双曲正弦函数定义如下: \[ y = \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] **解释与性质:** 1. **定义:** 双曲正弦函数是双曲函数的一种,类似于普通三角函数中的正弦函数,但它基于指数函数定义。 2. **图像特征:** - 函数图像关于原点对称。 - 当 \( x \) 趋向于正无穷大时,\( \sinh(x) \) 也趋向于正无穷大;当 \( x \) 趋向于负无穷大时,\( \sinh(x) \) 也趋向于负无穷大。 - 在 \( x = 0 \) 处,\( \sinh(0) = 0 \)。 3. **性质:** - **奇函数**:满足 \( \sinh(-x) = -\sinh(x) \)。 - **导数**:\( \frac{d}{dx} \sinh(x) = \cosh(x) \),其中 \( \cosh(x) \) 是双曲余弦函数。 - **积分**:\( \int \sinh(x) \, dx = \cosh(x) + C \)。 4. **应用:** 双曲正弦函数广泛应用于工程学、物理学以及数学中的各种领域,例如描述双曲线的几何性质、解决某些微分方程以及在相对论中描述时空关系等。 **示例计算:** 计算 \( \sinh(1) \): \[ \sinh(1) = \frac{e^{1} - e^{-1}}{2} \approx \frac{2.71828 - 0.36788}{2} \approx 1.1752 \] 希望这些信息对你理解双曲正弦函数有所帮助!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that the hyperbolic sine function, \( \sinh(x) \), actually describes the shape of a hanging cable or chain? This real-world phenomenon is known as a catenary! It’s fascinating how these mathematical functions connect to real-life structures and can be observed in architecture and engineering, making them not just theoretical concepts but also practical tools. When working with \( y=\sinh(x) \), one common mistake is confusing it with the regular sine function. Remember, hyperbolic functions have a unique set of properties and identities, such as \( \sinh(-x) = -\sinh(x) \), which makes them odd functions. So, double-check your signs when graphing to keep your curve in shape!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy