Question
upstudy study bank question image url

Let \( f(x)=4 \sin ^{2} 3 x \) find the value of \( f^{\prime}\left(\frac{1}{4} \pi\right) \)

Ask by Harrington Klein. in Mauritius
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f^{\prime}\left(\frac{1}{4} \pi\right) = -12 \)

Solution

To find the value of \( f^{\prime}\left(\frac{1}{4} \pi\right) \) for the function \( f(x) = 4 \sin^2(3x) \), follow these steps: 1. **Differentiate the Function:** Start by differentiating \( f(x) \) with respect to \( x \): \[ f(x) = 4 \sin^2(3x) \] Use the chain rule for differentiation. Recall that: \[ \frac{d}{dx} \sin^2(u) = 2 \sin(u) \cos(u) \cdot \frac{du}{dx} \] Applying this to \( f(x) \): \[ f'(x) = 4 \cdot 2 \sin(3x) \cos(3x) \cdot 3 = 24 \sin(3x) \cos(3x) \] Alternatively, using the double-angle identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \): \[ f'(x) = 12 \sin(6x) \] 2. **Evaluate at \( x = \frac{1}{4} \pi \):** Using the simplified derivative: \[ f'\left(\frac{1}{4} \pi\right) = 12 \sin\left(6 \cdot \frac{1}{4} \pi\right) = 12 \sin\left(\frac{3}{2} \pi\right) \] Calculate \( \sin\left(\frac{3}{2} \pi\right) \): \[ \sin\left(\frac{3}{2} \pi\right) = \sin(270^\circ) = -1 \] Therefore: \[ f'\left(\frac{1}{4} \pi\right) = 12 \times (-1) = -12 \] **Final Answer:** \( f^{\prime}\left(\frac{1}{4} \pi\right) = -12 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the derivative of the function \( f(x) = 4 \sin^{2}(3x) \), we can use the chain rule. 1. First, let's differentiate \( f(x) \): \[ f'(x) = 4 \cdot 2 \sin(3x) \cdot \cos(3x) \cdot (3) = 24 \sin(3x) \cos(3x) \] This can be further simplified using the identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \): \[ f'(x) = 12 \sin(6x) \] 2. Now we evaluate \( f' \left(\frac{1}{4} \pi\right) \): \[ f' \left(\frac{1}{4} \pi\right) = 12 \sin\left(6 \cdot \frac{1}{4} \pi\right) = 12 \sin\left(\frac{3}{2} \pi\right) \] We know that \( \sin\left(\frac{3}{2} \pi\right) = -1 \). 3. Therefore, substituting this back: \[ f' \left(\frac{1}{4} \pi\right) = 12 \cdot (-1) = -12 \] Thus, the final answer is: \[ f' \left(\frac{1}{4} \pi\right) = -12 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy