Question
upstudy study bank question image url

Find \( \frac{\mathrm{d} y}{\mathrm{~d} x} \) and the gradient of the curve at the point with the given value of \( x \) or \( y \). (a) \( y=(3 x-2)^{3}, x=2 \) (b) \( y=\sqrt{7-3 x}, x=1 \) (c) \( y=\frac{1}{3 x-2}, y=1 \) (d) \( y=\frac{1}{(2 x-5)^{3}}, y=\frac{1}{8} \)

Ask by Mccoy Smith. in Singapore
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The derivative is \( \frac{dy}{dx} = 9(3x - 2)^2 \). At \( x = 2 \), the gradient of the curve is **144**.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

To find \( \frac{\mathrm{d} y}{\mathrm{~d} x} \) and the gradient of the curve at the specified points, we can differentiate the given equations and then substitute the specified values. ### (a) \( y=(3 x-2)^{3}, x=2 \) First, we differentiate: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = 3(3x - 2)^{2} \cdot 3 = 9(3x - 2)^{2} \] Now, evaluate at \( x = 2 \): \[ \frac{\mathrm{d}y}{\mathrm{d}x} = 9(3(2) - 2)^{2} = 9(6 - 2)^{2} = 9(4)^{2} = 9 \cdot 16 = 144 \] ### (b) \( y=\sqrt{7-3 x}, x=1 \) Differentiate: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{7 - 3x}} \cdot (-3) = \frac{-3}{2\sqrt{7 - 3x}} \] Now, evaluate at \( x = 1 \): \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3}{2\sqrt{7 - 3(1)}} = \frac{-3}{2\sqrt{4}} = \frac{-3}{4} \] ### (c) \( y=\frac{1}{3 x-2}, y=1 \) To find \( x \) when \( y = 1 \): \[ 1 = \frac{1}{3x - 2} \implies 3x - 2 = 1 \implies 3x = 3 \implies x = 1 \] Differentiate: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1 \cdot 3}{(3x - 2)^{2}} = \frac{-3}{(3x - 2)^{2}} \] Evaluate at \( x = 1 \): \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3}{(3(1) - 2)^{2}} = \frac{-3}{(1)^{2}} = -3 \] ### (d) \( y=\frac{1}{(2 x-5)^{3}}, y=\frac{1}{8} \) To find \( x \) when \( y = \frac{1}{8} \): \[ \frac{1}{8} = \frac{1}{(2x - 5)^{3}} \implies (2x - 5)^{3} = 8 \implies 2x - 5 = 2 \implies 2x = 7 \implies x = \frac{7}{2} \] Differentiate: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3(2)}{(2x - 5)^{4}} = -\frac{6}{(2x - 5)^{4}} \] Evaluate at \( x = \frac{7}{2} \): \[ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{(2 \cdot \frac{7}{2} - 5)^{4}} = -\frac{6}{(7 - 5)^{4}} = -\frac{6}{2^{4}} = -\frac{6}{16} = -\frac{3}{8} \] ### Summary of Results: - (a) Gradient at \( x=2 \): 144 - (b) Gradient at \( x=1 \): \(-\frac{3}{4}\) - (c) Gradient at \( y=1 \): -3 - (d) Gradient at \( y=\frac{1}{8} \): \(-\frac{3}{8}\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy