\( \left. \begin{array} { l }{ | \vec { A B } | \cdot | \vec { C D } | } \\ { = A ( 2 ; 6 ; 3 ) } \\ { B ( 2 ; 3 ; 1 ) } \\ { C ( 0 ; 0 ; 0 ) } \\ { D ( 3 ; 2 ; 1 ) } \end{array} \right. \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the magnitude of the vector products \(|\vec{AB}\|\) and \(|\vec{CD}\|\), we first need to compute the vectors themselves. 1. For \(\vec{AB}\): \[ \vec{AB} = B - A = (2 - 2, 3 - 6, 1 - 3) = (0, -3, -2) \] The magnitude is: \[ |\vec{AB}| = \sqrt{0^2 + (-3)^2 + (-2)^2} = \sqrt{0 + 9 + 4} = \sqrt{13} \] 2. For \(\vec{CD}\): \[ \vec{CD} = D - C = (3 - 0, 2 - 0, 1 - 0) = (3, 2, 1) \] The magnitude is: \[ |\vec{CD}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] So, we find \(|\vec{AB}| = \sqrt{13}\) and \(|\vec{CD}| = \sqrt{14}\). Thus, the equation becomes: \[ |\vec{AB}| \cdot |\vec{CD}| = \sqrt{13} \cdot \sqrt{14} = \sqrt{182} \] And there you have it! The equation beautifully highlights the relationships and magnitudes of these vectors in a geometric space.