Question
upstudy study bank question image url

\( \left. \begin{array} { l }{ | \vec { A B } | \cdot | \vec { C D } | } \\ { = A ( 2 ; 6 ; 3 ) } \\ { B ( 2 ; 3 ; 1 ) } \\ { C ( 0 ; 0 ; 0 ) } \\ { D ( 3 ; 2 ; 1 ) } \end{array} \right. \)

Ask by Romero Graham. in Ukraine
Jan 10,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Произведение длин векторов \( \vec{AB} \) и \( \vec{CD} \) равно \( \sqrt{182} \), что примерно равно 13,49.

Solution

Дано: - Точка \( A(2; 6; 3) \) - Точка \( B(2; 3; 1) \) - Точка \( C(0; 0; 0) \) - Точка \( D(3; 2; 1) \) Необходимо найти произведение длин векторов \( \vec{AB} \) и \( \vec{CD} \), то есть \( |\vec{AB}| \cdot |\vec{CD}| \). **Шаг 1: Найдём векторы \( \vec{AB} \) и \( \vec{CD} \).** \[ \vec{AB} = B - A = (2 - 2;\ 3 - 6;\ 1 - 3) = (0;\ -3;\ -2) \] \[ \vec{CD} = D - C = (3 - 0;\ 2 - 0;\ 1 - 0) = (3;\ 2;\ 1) \] **Шаг 2: Вычислим длины векторов \( |\vec{AB}| \) и \( |\vec{CD}| \).** Длина вектора \( \vec{AB} \): \[ |\vec{AB}| = \sqrt{0^2 + (-3)^2 + (-2)^2} = \sqrt{0 + 9 + 4} = \sqrt{13} \] Длина вектора \( \vec{CD} \): \[ |\vec{CD}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] **Шаг 3: Найдём произведение длин векторов.** \[ |\vec{AB}| \cdot |\vec{CD}| = \sqrt{13} \cdot \sqrt{14} = \sqrt{13 \times 14} = \sqrt{182} \] **Ответ:** Произведение длин векторов \( \vec{AB} \) и \( \vec{CD} \) равно \( \sqrt{182} \), что приблизительно составляет \( 13{,}49 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the magnitude of the vector products \(|\vec{AB}\|\) and \(|\vec{CD}\|\), we first need to compute the vectors themselves. 1. For \(\vec{AB}\): \[ \vec{AB} = B - A = (2 - 2, 3 - 6, 1 - 3) = (0, -3, -2) \] The magnitude is: \[ |\vec{AB}| = \sqrt{0^2 + (-3)^2 + (-2)^2} = \sqrt{0 + 9 + 4} = \sqrt{13} \] 2. For \(\vec{CD}\): \[ \vec{CD} = D - C = (3 - 0, 2 - 0, 1 - 0) = (3, 2, 1) \] The magnitude is: \[ |\vec{CD}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] So, we find \(|\vec{AB}| = \sqrt{13}\) and \(|\vec{CD}| = \sqrt{14}\). Thus, the equation becomes: \[ |\vec{AB}| \cdot |\vec{CD}| = \sqrt{13} \cdot \sqrt{14} = \sqrt{182} \] And there you have it! The equation beautifully highlights the relationships and magnitudes of these vectors in a geometric space.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy