Question
Given the function \( f(x)=8 x-5 \), evaluate and simplify the expressions below. See special instructions on how to enter your answers. \( f(a)= \) \( f(a+h)=\square \) \( \frac{f(a+h)-f(a)}{h}=\square \)
Ask by Salinas Norton. in the United States
Jan 27,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f(a) = 8a - 5 \), \( f(a + h) = 8a + 8h - 5 \), \( \frac{f(a + h) - f(a)}{h} = 8 \)
Solution
Given the function \( f(x) = 8x - 5 \), let's evaluate and simplify the required expressions.
1. **Evaluate \( f(a) \):**
\[
f(a) = 8a - 5
\]
2. **Evaluate \( f(a + h) \):**
\[
f(a + h) = 8(a + h) - 5 = 8a + 8h - 5
\]
3. **Simplify \( \frac{f(a + h) - f(a)}{h} \):**
\[
\frac{f(a + h) - f(a)}{h} = \frac{(8a + 8h - 5) - (8a - 5)}{h} = \frac{8h}{h} = 8
\]
**Final Answers:**
- \( f(a) = 8a - 5 \)
- \( f(a + h) = 8a + 8h - 5 \)
- \( \frac{f(a + h) - f(a)}{h} = 8 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To evaluate the function \( f(x) = 8x - 5 \): 1. For \( f(a) \): \[ f(a) = 8a - 5 \] 2. For \( f(a+h) \): \[ f(a+h) = 8(a+h) - 5 = 8a + 8h - 5 \] 3. To find \( \frac{f(a+h) - f(a)}{h} \): \[ \frac{f(a+h) - f(a)}{h} = \frac{(8a + 8h - 5) - (8a - 5)}{h} = \frac{8a + 8h - 5 - 8a + 5}{h} = \frac{8h}{h} = 8 \] So, putting the results together: - \( f(a) = 8a - 5 \) - \( f(a+h) = 8a + 8h - 5 \) - \( \frac{f(a+h) - f(a)}{h} = 8 \)