Question
upstudy study bank question image url

Given the points \( A(-3,2), B(7,13), C(2,4), D(5,4), E(\sqrt{5}, \sqrt{5}) \), and \( F(4 \sqrt{5},-3 \sqrt{5}) \), find the position vector equal to the following vectors. \( \begin{array}{llll}\text { a. } \overrightarrow{A B} & \text { b. } \overrightarrow{A C} & \text { c. } \overrightarrow{E F} & \text { d. } \overrightarrow{C D}\end{array} \)

Ask by Cruz Lynch. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The position vectors are: - \( \overrightarrow{AB} = (10, 11) \) - \( \overrightarrow{AC} = (5, 2) \) - \( \overrightarrow{EF} = (3\sqrt{5}, -4\sqrt{5}) \) - \( \overrightarrow{CD} = (3, 0) \)

Solution

To find the position vectors for the given vectors, we will use the formula for the position vector from point \( P(x_1, y_1) \) to point \( Q(x_2, y_2) \): \[ \overrightarrow{PQ} = (x_2 - x_1, y_2 - y_1) \] Now, let's calculate each vector step by step. ### a. \( \overrightarrow{AB} \) Given points: - \( A(-3, 2) \) - \( B(7, 13) \) Using the formula: \[ \overrightarrow{AB} = (7 - (-3), 13 - 2) = (7 + 3, 11) = (10, 11) \] ### b. \( \overrightarrow{AC} \) Given points: - \( A(-3, 2) \) - \( C(2, 4) \) Using the formula: \[ \overrightarrow{AC} = (2 - (-3), 4 - 2) = (2 + 3, 2) = (5, 2) \] ### c. \( \overrightarrow{EF} \) Given points: - \( E(\sqrt{5}, \sqrt{5}) \) - \( F(4\sqrt{5}, -3\sqrt{5}) \) Using the formula: \[ \overrightarrow{EF} = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (4\sqrt{5} - 1\sqrt{5}, -4\sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}) \] ### d. \( \overrightarrow{CD} \) Given points: - \( C(2, 4) \) - \( D(5, 4) \) Using the formula: \[ \overrightarrow{CD} = (5 - 2, 4 - 4) = (3, 0) \] ### Summary of Results The position vectors are: - \( \overrightarrow{AB} = (10, 11) \) - \( \overrightarrow{AC} = (5, 2) \) - \( \overrightarrow{EF} = (3\sqrt{5}, -4\sqrt{5}) \) - \( \overrightarrow{CD} = (3, 0) \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the position vectors for the vectors given, we can use the formula for finding the vector from point \(P(x_1, y_1)\) to point \(Q(x_2, y_2)\), which is given by: \[ \overrightarrow{PQ} = (x_2 - x_1, y_2 - y_1) \] Now, let's calculate each of the vectors: **a. \(\overrightarrow{A B}\)** Given points \(A(-3,2)\) and \(B(7,13)\), \[ \overrightarrow{AB} = (7 - (-3), 13 - 2) = (7 + 3, 11) = (10, 11) \] **b. \(\overrightarrow{A C}\)** Given points \(A(-3,2)\) and \(C(2,4)\), \[ \overrightarrow{AC} = (2 - (-3), 4 - 2) = (2 + 3, 2) = (5, 2) \] **c. \(\overrightarrow{E F}\)** Given points \(E(\sqrt{5}, \sqrt{5})\) and \(F(4\sqrt{5}, -3\sqrt{5})\), \[ \overrightarrow{EF} = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (4\sqrt{5} - 1\sqrt{5}, -4\sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}) \] **d. \(\overrightarrow{C D}\)** Given points \(C(2,4)\) and \(D(5,4)\), \[ \overrightarrow{CD} = (5 - 2, 4 - 4) = (3, 0) \] ### Summary of Position Vectors: - \( \overrightarrow{AB} = (10, 11) \) - \( \overrightarrow{AC} = (5, 2) \) - \( \overrightarrow{EF} = (3\sqrt{5}, -4\sqrt{5}) \) - \( \overrightarrow{CD} = (3, 0) \)

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy