Given the points \( A(-3,2), B(7,13), C(2,4), D(5,4), E(\sqrt{5}, \sqrt{5}) \), and \( F(4 \sqrt{5},-3 \sqrt{5}) \), find the position vector equal to the following vectors. \( \begin{array}{llll}\text { a. } \overrightarrow{A B} & \text { b. } \overrightarrow{A C} & \text { c. } \overrightarrow{E F} & \text { d. } \overrightarrow{C D}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the position vectors for the vectors given, we can use the formula for finding the vector from point \(P(x_1, y_1)\) to point \(Q(x_2, y_2)\), which is given by: \[ \overrightarrow{PQ} = (x_2 - x_1, y_2 - y_1) \] Now, let's calculate each of the vectors: **a. \(\overrightarrow{A B}\)** Given points \(A(-3,2)\) and \(B(7,13)\), \[ \overrightarrow{AB} = (7 - (-3), 13 - 2) = (7 + 3, 11) = (10, 11) \] **b. \(\overrightarrow{A C}\)** Given points \(A(-3,2)\) and \(C(2,4)\), \[ \overrightarrow{AC} = (2 - (-3), 4 - 2) = (2 + 3, 2) = (5, 2) \] **c. \(\overrightarrow{E F}\)** Given points \(E(\sqrt{5}, \sqrt{5})\) and \(F(4\sqrt{5}, -3\sqrt{5})\), \[ \overrightarrow{EF} = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (4\sqrt{5} - 1\sqrt{5}, -4\sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}) \] **d. \(\overrightarrow{C D}\)** Given points \(C(2,4)\) and \(D(5,4)\), \[ \overrightarrow{CD} = (5 - 2, 4 - 4) = (3, 0) \] ### Summary of Position Vectors: - \( \overrightarrow{AB} = (10, 11) \) - \( \overrightarrow{AC} = (5, 2) \) - \( \overrightarrow{EF} = (3\sqrt{5}, -4\sqrt{5}) \) - \( \overrightarrow{CD} = (3, 0) \)