Question
upstudy study bank question image url

\( \frac { 25 \times t ^ { - 4 } } { 5 ^ { - 3 } \times 10 ^ { - 8 } t ^ { - 8 } } \quad ( t \neq 6 ) \)

Ask by Summers Burns. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \(256 \times 5^{13} \times t^{4}\).

Solution

Calculate or simplify the expression \( \frac{25 \times t^{-4}}{5^{-3} \times 10^{-8} \times t^{-8}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{25t^{-4}}{5^{-3}\times 10^{-8}t^{-8}}\) - step1: Multiply by \(a^{-n}:\) \(\frac{25t^{-4}\times t^{8}}{5^{-3}\times 10^{-8}}\) - step2: Multiply: \(\frac{25t^{4}}{5^{-3}\times 10^{-8}}\) - step3: Factor the expression: \(\frac{5^{2}t^{4}}{5^{-3}\times 10^{-8}}\) - step4: Reduce the fraction: \(\frac{5^{5}t^{4}}{10^{-8}}\) - step5: Factor the expression: \(\frac{5^{5}t^{4}}{5^{-8}\times 2^{-8}}\) - step6: Reduce the fraction: \(\frac{5^{13}t^{4}}{2^{-8}}\) - step7: Rewrite the expression: \(\frac{5^{13}t^{4}}{\frac{1}{2^{8}}}\) - step8: Multiply by the reciprocal: \(5^{13}t^{4}\times 2^{8}\) - step9: Multiply the numbers: \(256\times 5^{13}t^{4}\) The simplified expression is \(256 \times 5^{13} \times t^{4}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expression \( \frac { 25 \times t ^ { - 4 } } { 5 ^ { - 3 } \times 10 ^ { - 8 } t ^ { - 8 } } \), we first simplify the denominator. Recall that \( 10 = 2 \times 5 \), so \( 10^{-8} = 2^{-8} \times 5^{-8} \). This means: \[ 5^{-3} \times 10^{-8} = 5^{-3} \times 2^{-8} \times 5^{-8} = 2^{-8} \times 5^{-11} \] Now rewriting the whole expression: \[ \frac{25 \times t^{-4}}{2^{-8} \times 5^{-11} \times t^{-8}} \] Simplifying the numerator \( 25 = 5^2 \): \[ = \frac{5^2 \times t^{-4}}{2^{-8} \times 5^{-11} \times t^{-8}} = \frac{5^2 \times t^{-4} \times 2^8 \times 5^{11} \times t^{8}}{1} \] Combining the powers of \( 5 \) and \( t \): \[ = 2^8 \times 5^{2 + 11} \times t^{-4 + 8} = 2^8 \times 5^{13} \times t^{4} \] So, the simplified expression becomes: \[ = 2^8 \times 5^{13} \times t^4 \] Now calculating \( 2^8 = 256 \), the final expression can be presented as: \[ = 256 \times 5^{13} \times t^4 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy